Skip to main content

Biosynthesis of Salvia Specialized Metabolites and Biotechnological Approaches to Increase Their Production

  • Chapter
  • First Online:
Salvia Biotechnology

Abstract

Aromatic Salvia species are particularly valuable for providing several bioactive compounds used as food additives, pigments, cosmetics, perfumes and fine chemicals. Within the Lamiaceae family, the Salvia genus, with more than 900 species, biosynthesizes a plethora of beneficial metabolites including terpenes, steroids and polyphenols. The whole plant can be considered a factory of bioactive compounds, but plant cell and tissue cultures are also an attractive sustainable alternative to cultivation. Salvia cell cultures can readily be initiated from different explants, including leaves, roots, stems, petioles, anthers and seedlings; however high metabolites accumulation in plant tissue and cell culture is a prerequisite for massive production of these bioactive compounds. In this chapter, the occurrence and tissue distribution of specialized metabolites in several Salvia species, especially flavonoids and diterpenoids, will be reviewed along with recent advances in the understanding of biosynthetic pathways as well as regulatory mechanisms leading to their biosynthesis. We will focus on the recent biotechnological approaches aimed at enhancing the final biomass and metabolite accumulation in Salvia cell and tissue cultures. Advances in metabolic engineering strategies will be also summarized, reporting relevant and successful results and potential pitfalls, in order to provide valuable perspectives for developing cell and tissue cultures as a reliable and standardized biomass platform for the extraction of Salvia bioactive metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4C-DHPL:

4-coumaroyl-3′4′-dihydroxyphenyllactic acid

4CL:

4-coumarate-CoA ligase

AtPAP1:

Arabidopsis Production of Anthocyanin Pigment

AtPIF5:

Phytochrome-interacting factor 5

BA:

6-benzylaminopurine

BABA:

β-Aminobutyricacid

C4H:

Cinnamic acid 4-hydroxylase

CcCls:

Cistus creticus copal-8-ol diphosphate synthase

CGA:

Chlorogenic acid

CPS:

Copalyl diphosphate synthase

CT:

cryptotanshinone

CYP:

Cytochrome P450

DHPL:

3,4-dihydroxyphenyllactic acid

diTPS:

Diterpene synthases

DMAPP:

Dimethylallyl diphosphate

DW:

Dry weight

FPP:

(E,E)-farnesyl diphosphate

GGPP:

(E,E,E)-geranylgeranyl diphosphate

GPP:

geranyl diphosphate

HPPR:

Hydroxyphenylpyruvate reductase

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

IPP:

Isopentenyl diphosphate

KSL:

Kaurene synthase-like

KSs:

Ent-kaurene synthases

MEP:

2-C-methyl-D-erythritol-4-phosphate

MJ:

Methyl jasmonate

MVA:

Mevalonate pathway

NAA:

Naphthaleneacetic acid

PAL:

Phenylalanine ammonia-lyase

RA:

Rosmarinic acid

RAS:

Rosmarinic acid synthase

SsSS:

S. sclarea sclareol synthase

TAT:

Tyrosine aminotransferase

TDZ:

Thidiazuron

TF:

Transcriptional factors

WHO:

World Health Organization

YE:

Yeast extract

References

  1. Stavrinides A, Tatsis EC, Caputi L et al (2016) Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nat Commun 7:12116. https://doi.org/10.1038/ncomms12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  PubMed  Google Scholar 

  3. Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246. https://doi.org/10.1104/pp.107.100370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buer CS, Muday GK, Carolina N (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of arabidopsis roots to gravity and light. Plant Cell 16:1191–1205. https://doi.org/10.1105/tpc.020313.tiles

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323. https://doi.org/10.1016/j.pbi.2005.03.005

    Article  CAS  PubMed  Google Scholar 

  6. Peer WA, Murphy A (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563. https://doi.org/10.1016/j.tplants.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  7. Last RL (2015) Enzyme recruitment to specialized metabolism something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol 3:1512–1523. https://doi.org/10.1104/pp.15.00994

    Google Scholar 

  8. Weng J, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  9. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336. https://doi.org/10.3390/metabo2020303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discovery 14:111–129. https://doi.org/10.1038/nrd4510

    Article  CAS  PubMed  Google Scholar 

  11. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043. https://doi.org/10.1021/cr900019j

    Article  CAS  PubMed  Google Scholar 

  12. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19. https://doi.org/10.1016/s0031-9422(03)00300-5

    Article  CAS  PubMed  Google Scholar 

  13. Pigatto AGS, Blanco CC, Mentz LA, Soares GLG (2015) Tropane alkaloids and calystegines as chemotaxonomic markers in the Solanaceae. An Acad Bras Cienc 87:2139–2149. https://doi.org/10.1590/0001-3765201520140231

    Article  PubMed  Google Scholar 

  14. Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352. https://doi.org/10.1007/s00425-007-0627-7

    Article  CAS  PubMed  Google Scholar 

  15. Zang YX, Kim HU, Kim JA et al (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276:3559–3574. https://doi.org/10.1111/j.1742-4658.2009.07076.x

    Article  CAS  PubMed  Google Scholar 

  16. Ohmiya S, Saito K, Murakoshi I (2000) Recent progress on the lupine alkaloids in leguminous plants growing mainly in Japan. Yakugaku Zasshi 120:923–934

    Article  CAS  PubMed  Google Scholar 

  17. Jenks AA, Kim SC (2013) Medicinal plant complexes of Salvia subgenus Calosphace: an ethnobotanical study of new world sages. J Ethnopharmacol 146:214–224. https://doi.org/10.1016/j.jep.2012.12.035

    Article  PubMed  Google Scholar 

  18. Akhondzadeh S, Noroozian M, Mohammadi M et al (2003) Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’ s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 28:53–59. https://doi.org/10.1046/j.1365-2710.2003.00463.x

    Article  CAS  PubMed  Google Scholar 

  19. Scholey AB, Tildesley NTJ, Ballard CG et al (2008) An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology 198:127–139. https://doi.org/10.1007/s00213-008-1101-3

    Article  CAS  PubMed  Google Scholar 

  20. Wu YB, Ni ZY, Shi QW et al (2012) Constituents from salvia species and their biological activities. Chem Rev 112:5967–6026. https://doi.org/10.1021/cr200058f

    Article  CAS  PubMed  Google Scholar 

  21. Walker JB, Sytsma KJ, Treutlein J, Wink M (2004) Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot 91:1115–1125. https://doi.org/10.3732/ajb.91.7.1115

    Article  PubMed  Google Scholar 

  22. Sandasi M, Kamatou GP, Viljoen AM (2012) An untargeted metabolomic approach in the chemotaxonomic assessment of two Salvia species as a potential source of alpha-bisabolol. Phytochemistry 84:94–101. https://doi.org/10.1016/j.phytochem.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  23. Nakiboğlu M (2002) The classification of the Salvia L. (Labiatae) species distributed in West Anatolia according to phenolic compounds. Turk J Bot 26:103–108

    Google Scholar 

  24. Rzepa J, Wojtal L, Staszek D et al (2009) Fingerprint of selected Salvia species by HS-GC-MS analysis of their volatile fraction. J Chromatogr Sci 47:575–580

    Article  CAS  PubMed  Google Scholar 

  25. Máthé I, Máthé Á, Hohmann J, Janicsák G (2010) Volatile and some non-volatile chemical constituents of Mediterranean Salvia species beyond their native area. Isr J Plant Sci 58:273–277. https://doi.org/10.1560/ijps.58.3-4.273

    Article  Google Scholar 

  26. Jassbi AR, Asadollahi M, Masroor M et al (2012) Chemical classification of the essential oils of the Iranian Salvia species in comparison with their botanical taxonomy. Chem Biodivers 9:1254–1271. https://doi.org/10.1002/cbdv.201100209

    Article  CAS  PubMed  Google Scholar 

  27. Russo A, Formisano C, Rigano D et al (2013) Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol 55:42–47. https://doi.org/10.1016/j.fct.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  28. Kamatou GPP, Makunga NP, Ramogola WPN, Viljoen AM (2008) South African Salvia species: a review of biological activities and phytochemistry. J Ethnopharmacol 119:664–672. https://doi.org/10.1016/j.jep.2008.06.030

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Li Q, Zhang C et al (2013) An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharm Sin B 3:273–280. https://doi.org/10.1016/j.apsb.2013.06.001

    Article  Google Scholar 

  30. Imanshahidi M, Hosseinzadeh H (2006) The pharmacological effects of Salvia species. Phyther Res 437:427–437. https://doi.org/10.1002/ptr

    Article  CAS  Google Scholar 

  31. Kharazian N (2014) Flavonoid constituents in some species of Salvia L. (Lamiaceae) in Iran. J Sci I R Iran 25:219–227

    Google Scholar 

  32. Lu Y, Foo LY (2002) Polyphenolics of Salvia—a review. Phytochemistry 59:117–140

    Article  CAS  PubMed  Google Scholar 

  33. del Bano MJ, Lorente J, Castillo J et al (2003) Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J Agric Food Chem 51:4247–4253. https://doi.org/10.1021/jf0300745

    Article  PubMed  CAS  Google Scholar 

  34. Khojasteh A, Mirjalili MH, Palazon J, Hidalgo D (2014) New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36:2393–2406. https://doi.org/10.1007/s10529-014-1640-0

    Article  CAS  PubMed  Google Scholar 

  35. Vega-Sanchez ME, Ronald PC (2010) Genetic and biotechnological approaches for biofuel crop improvement. Curr Opin Biotechnol 21:218–224. https://doi.org/10.1016/j.copbio.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  36. Petersen M, Abdullah Y, Benner J et al (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679. https://doi.org/10.1016/j.phytochem.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  37. Yamamura Y, Ogihara Y, Mizukami H (2001) Cinnamic acid 4-hydroxylase from Lithospermum erythrorhizon: cDNA cloning and gene expression. Plant Cell Rep 20:655–662

    Article  CAS  Google Scholar 

  38. Matsuno M, Nagatsu A, Ogihara Y et al (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4′-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett 514:219–224

    Article  CAS  PubMed  Google Scholar 

  39. Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40:4301–4310. https://doi.org/10.1007/s11033-013-2517-3

    Article  CAS  PubMed  Google Scholar 

  40. Zhang S, Yan Y, Wang B et al (2014) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J Biosci Bioeng 117:645–651. https://doi.org/10.1016/j.jbiosc.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  41. Docimo T, Mattana M, Fasano R et al (2013) Ectopic expression of the Osmyb4 rice gene enhances synthesis of hydroxycinnamic acid derivatives in tobacco and clary sage. Biol Plant 57:179–183

    Article  CAS  Google Scholar 

  42. Ge Q, Zhang Y, Hua W et al (2015) Combination of transcriptomic and metabolomic analyses reveals a JAZ repressor in the jasmonate signaling pathway of Salvia miltiorrhiza. Sci Rep 5:1–14. https://doi.org/10.1038/srep14048

    Google Scholar 

  43. Ulubelen A, Topcu G, Eri C et al (1994) Terpenoids from Salvia sclarea. Phytochemistry 36:971–974. https://doi.org/10.1016/s0031-9422(00)90474-6

    Article  CAS  PubMed  Google Scholar 

  44. Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949. https://doi.org/10.1111/pce.12314

    Article  PubMed  Google Scholar 

  45. Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: nove1 patterns of S-Linalool synthase gene expression in the C. breweri Flower. Plant Cell Am Soc Plant Physiol 8:1137–1148. https://doi.org/10.1105/tpc.8.7.1137

    CAS  Google Scholar 

  46. Raguso RA, Pichersky E (1999) New perspectives in pollination biology: floral fragrances. A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: linalool biosynthesis in flowering plants. Plant Sci Biol 14:95–120

    Article  Google Scholar 

  47. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  48. Schmiderer C, Grassi P, Novak J et al (2008) Diversity of essential oil glands of clary sage (Salvia sclarea L., Lamiaceae). Plant Biol 10:433–440. https://doi.org/10.1111/j.1438-8677.2008.00053.x

    Article  CAS  PubMed  Google Scholar 

  49. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602. https://doi.org/10.1016/j.tplants.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  50. Bouwmeester HJ (2006) Engineering the essence of plants. Nat Biotechnol 24:1359–1361. https://doi.org/10.1038/nbt1106-1359

    Article  CAS  PubMed  Google Scholar 

  51. Zerbe P, Hamberger B, Yuen MMS et al (2013) Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol 162:1073–1091. https://doi.org/10.1104/pp.113.218347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Peters RJ (2010) Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep 27:1521–1530. https://doi.org/10.1039/c0np00019a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caissard JC, Olivier T, Delbecque C et al (2012) Extracellular localization of the diterpene sclareol in Clary Sage (Salvia sclarea L., Lamiaceae). PLoS ONE 7:1–8. https://doi.org/10.1371/journal.pone.0048253

    Article  CAS  Google Scholar 

  54. Caniard A, Zerbe P, Legrand S et al (2012) Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol 12:1. https://doi.org/10.1186/1471-2229-12-119

    Article  CAS  Google Scholar 

  55. Schalk M, Pastore L, Mirata MA et al (2012) Toward a biosynthetic route to sclareol and amber odorants. J Am Chem Soc 134:18900–18903

    Article  CAS  PubMed  Google Scholar 

  56. Rau O, Wurglics M, Paulke A et al (2006) Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma. Planta Med 72:881–887. https://doi.org/10.1055/s-2006-946680

    Article  CAS  PubMed  Google Scholar 

  57. Poeckel D, Greiner C, Verhoff M et al (2008) Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem Pharmacol 76:91–97. https://doi.org/10.1016/j.bcp.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  58. Bauer J, Kuehnl S, Rollinger JM et al (2012) Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E(2) synthase-1. J Pharmacol Exp Ther 342:169–176. https://doi.org/10.1124/jpet.112.193847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Birtić S, Dussort P, Pierre FX et al (2015) Carnosic acid. Phytochemistry 115:9–19. https://doi.org/10.1016/j.phytochem.2014.12.026

    Article  PubMed  CAS  Google Scholar 

  60. Abreu ME, Müller M, Alegre L, Munné-Bosch S (2008) Phenolic diterpene and α-tocopherol contents in leaf extracts of 60 Salvia species. J Sci Food Agric 88:2648–2653. https://doi.org/10.1002/jsfa.3384

    Article  CAS  Google Scholar 

  61. Brückner K, Božić D, Manzano D et al (2014) Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101:52–64. https://doi.org/10.1016/j.phytochem.2014.01.021

    Article  PubMed  CAS  Google Scholar 

  62. Božić D, Papaefthimiou D, Brückner K et al (2015) Towards elucidating carnosic acid biosynthesis in Lamiaceae: functional characterization of the three first steps of the pathway in Salvia fruticosa and Rosmarinus officinalis. PLoS ONE 10:1–28. https://doi.org/10.1371/journal.pone.0124106

    Google Scholar 

  63. Falara V, Pichersky E, Kanellis AK (2010) A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active. Oxygen-containing labdane-type diterpenes. Plant Physiol 154:301–310. https://doi.org/10.1104/pp.110.159566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sallaud C, Giacalone C, Töpfer R et al (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72:1–17. https://doi.org/10.1111/j.1365-313x.2012.05068.x

    Article  CAS  PubMed  Google Scholar 

  65. Hillwig ML, Xu M, Toyomasu T et al (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant J 68:1051–1060. https://doi.org/10.1111/j.1365-313x.2011.04756.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhong GX, Peng LI, Zeng LJ et al (2009) Chemical characteristics of Salvia miltiorrhiza (Danshen) collected from different locations in China. J Agric Food Chem 57:6879–6887. https://doi.org/10.1021/jf901462s

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Guo J, Bao J et al (2014) The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review. Med Res Rev 34:768–794. https://doi.org/10.1002/med.21304

    Article  CAS  PubMed  Google Scholar 

  68. Hong HJ, Liu JC, Chen PY et al (2012) Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. Int J Cardiol 157:174–179. https://doi.org/10.1016/j.ijcard.2010.12.012

    Article  PubMed  Google Scholar 

  69. Liu JR, Chen GF, Shih HN, Kuo PC (2008) Enhanced antioxidant bioactivity of Salvia miltiorrhiza (Danshen) products prepared using nanotechnology. Phytomedicine 15:23–30. https://doi.org/10.1016/j.phymed.2007.11.012

    Article  PubMed  CAS  Google Scholar 

  70. Boya MT, Valverde S (1981) An orthoquinone isolated from Salvia aethiopis. Phytochemistry 20:1367–1368. https://doi.org/10.1016/0031-9422(81)80041-6

    Article  CAS  Google Scholar 

  71. Walencka E, Rozalska S, Wysokinska H et al (2007) Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med 73:545–551. https://doi.org/10.1055/s-2007-967179

    Article  CAS  PubMed  Google Scholar 

  72. Gao W, Hillwig ML, Huango L et al (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173. https://doi.org/10.1021/ol902051v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cui G, Duan L, Jin B et al (2015) Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol 169:1607–1618. https://doi.org/10.1104/pp.15.00695

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu Z, Peters RJ, Weirather J et al (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961. https://doi.org/10.1111/tpj.12865

    Article  CAS  PubMed  Google Scholar 

  75. Marchev A, Haas C, Schulz S, Pavlov A (2014) Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances. Biotechnol Lett 36:211–221. https://doi.org/10.1007/s10529-013-1350-z

    Article  CAS  PubMed  Google Scholar 

  76. Facchini PJ (2001) Alkaloids biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann Rev Plant Physiol Plant Mol Biol 59:29–66

    Article  Google Scholar 

  77. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769. https://doi.org/10.1146/annurev.arplant.59.032607.092730

    Article  CAS  PubMed  Google Scholar 

  78. Hippolyte I, Marin B, Baccou JC et al (1992) Growth and rosmarinic acid production in cell suspension of Salvia officinalis L. Plant Cell Rep 11:109–112. https://doi.org/10.1007/bf00232160

    Article  CAS  PubMed  Google Scholar 

  79. Karam NS, Jawad FM, Arikat NA et al (2003) Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue Organ Cult 73:117–121. https://doi.org/10.1023/a:1022806420209

    Article  CAS  Google Scholar 

  80. Grzegorczyk I, Krolicka A, Wysokinska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch C 61:351–356

    Article  CAS  PubMed  Google Scholar 

  81. Mulder-Krieger TH, Verpoorte R, Svendsen AB et al (1988) Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell Tissue Organ Cult 13:85–154. https://doi.org/10.1007/bf00034451

    Article  CAS  Google Scholar 

  82. Becker H (1970) Untersuchungen zur Frage der Bildung fliichtiger Stoffwechselprodukte in. Calluskulturen Biochem Physiol Pftanz 161:425–441

    Google Scholar 

  83. Katagi H, Honda K, Inui M et al (1983) Essential oil in adventitious shoots of cultured Lavandula vera cells. Nippon Nōgeikagaku Kaishi 57:771–773. https://doi.org/10.1271/nogeikagaku1924.57.771

    Article  CAS  Google Scholar 

  84. Webb JK, Banthorpe DV, Watson DG (1984) Monoterpene synthesis in shoots regenerated from callus cultures. Phytochemistry 23:903–904. https://doi.org/10.1016/S0031-9422(00)85056-6

    Article  CAS  Google Scholar 

  85. Kuhlmann A, Röhl C (2006) Phenolic antioxidant compounds produced by in vitro cultures of rosemary (Rosmarinus officinalis) and their anti-inflammatory effect on lipopolysaccharide-activated microglia. Pharm Biol 44:401–410. https://doi.org/10.1080/13880200600794063

    Article  CAS  Google Scholar 

  86. Wang JY, Liu D (1987) Organogenesis of Salvia miltiorrhiza. Plant Physiol Commun 6:46

    Google Scholar 

  87. Lemraski MG, Eftekhari M, Faraji M, Zarrini SS (2014) Study of callus induction in common sage (Salvia Officinalis L.). Int J Agric Crop Sci 7:386–389

    Google Scholar 

  88. Miyasaka H, Nasu M, Yamamoto T et al (1986) Production of cryptotanshinone and ferruginol by immobilized cultured cells of Salvia miltiorrhiza. Phytochemistry 25:1621–1624. https://doi.org/10.1016/S0031-9422(00)81221-2

    Article  CAS  Google Scholar 

  89. Miyasaka H, Nasu M, Yamamoto T et al (1987) Effect of nutritional factors on cryptotanshinone and ferruginol production by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry 26:1421–1424. https://doi.org/10.1016/S0031-9422(00)81826-9

    Article  CAS  Google Scholar 

  90. Shimomura K, Kitazawa T, Okamura N, Yagi A (1991) Tanshinone production in adventitious roots and regenerates of Salvia miltiorrhiza. J Nat Prod 54:1583–1587. https://doi.org/10.1021/np50078a014

    Article  CAS  Google Scholar 

  91. Song JY, Qi JJ, Ren CL et al (2000) Dynamics of growth and total tanshinones accumulation in crown gall cultures of salvia miltiorrhiza. Acta Pharm Sin 35:929–931

    CAS  Google Scholar 

  92. Saito K (1993) Genetic engineering in tissue culture of medicinal plants. Plant Tissue Cult Lett 10:8. https://doi.org/10.5511/plantbiotechnology1984.10.1

    Google Scholar 

  93. Kuzma L, Bruchajzer E, Wysokinska H (2008) Diterpenoid production in hairy root culture of Salvia sclarea L. Z Naturforsch C 63:621–624

    Article  CAS  PubMed  Google Scholar 

  94. Hao G, Ji H, Li Y et al (2012) Exogenous ABA and polyamines enhanced salvianolic acids contents in hairy root cultures of Salvia miltiorrhiza Bge. f. alba. Plant Omics J 5:446–452

    CAS  Google Scholar 

  95. Gupta SK, Liu R, Liaw S, Chan H (2011) Enhanced tanshinone production in hairy roots of ‘Salvia miltiorrhiza Bunge’ under the influence of plant growth regulators in liquid culture. Bot Stud 52:435–443

    CAS  Google Scholar 

  96. Marchev A, Georgiev V, Ivanov I et al (2011) Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage (Salvia tomentosa Mill.). Biotechnol Lett 33:1873–1878. https://doi.org/10.1007/s10529-011-0625-5

    Article  CAS  PubMed  Google Scholar 

  97. Zhi BH, Alfermann AW (1993) Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 32:699–703. https://doi.org/10.1016/S0031-9422(00)95156-2

    Article  Google Scholar 

  98. Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88:437–449. https://doi.org/10.1007/s00253-010-2797-7

    Article  CAS  PubMed  Google Scholar 

  99. Chen H, Chen F, Chiu FCK, Lo CMY (2001) The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzym Microb Technol 28:100–105

    Article  CAS  Google Scholar 

  100. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  101. Chen H, Chen F (2000) Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep 19:710–717

    Article  CAS  Google Scholar 

  102. Yan Q, Hu Z, Xiang R, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119:416–424. https://doi.org/10.1016/j.jbiotec.2005.04.020

    Article  CAS  PubMed  Google Scholar 

  103. Ge X, Wu J (2005) Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by β-aminobutyric acid. Appl Microbiol Biotechnol 68:183–188. https://doi.org/10.1007/s00253-004-1873-2

    Article  CAS  PubMed  Google Scholar 

  104. Zhang C, Yan Q, Cheuk W, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70:147–151. https://doi.org/10.1055/s-2004-815492

    Article  CAS  PubMed  Google Scholar 

  105. Ge X, Wu J (2005) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168:487–491. https://doi.org/10.1016/j.plantsci.2004.09.012

    Article  CAS  Google Scholar 

  106. Zhou J, Fang L, Wang X et al (2013) La Dramaticaly enhances the accumulation of tanshinones in Salvia miltiorrhiza hairy root cultures. Earth Sci Res J 2:187–192. https://doi.org/10.5539/esr.v2n1p187

    Google Scholar 

  107. Shi M, Kwok KW, Wu JY (2007) Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem 196:191–196. https://doi.org/10.1042/ba20060147

    Google Scholar 

  108. Wu J-Y, Shi M (2008) Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Appl Microbiol Biotechnol 78:441–448. https://doi.org/10.1007/s00253-007-1332-y

    Article  CAS  PubMed  Google Scholar 

  109. Wu J-Y, Ng J, Shi M, Wu S-J (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process. Appl Microbiol Biotechnol 77:543–550. https://doi.org/10.1007/s00253-007-1192-5

    Article  CAS  PubMed  Google Scholar 

  110. Zhao J, Zhou L, Wu J (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 137–144. https://doi.org/10.1007/s00253-010-2443-4

  111. Zhao J, Zhou L, Wu J (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide—protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522. https://doi.org/10.1016/j.procbio.2010.05.034

    Article  CAS  Google Scholar 

  112. Kai G, Liao P, Xu H, Wang J (2012) Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures. Acta Physiol Plant 34:1421–1433. https://doi.org/10.1007/s11738-012-0940-z

    Article  CAS  Google Scholar 

  113. Zhou M, Zhu X, Shao J (2011) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol 90:1229–1239. https://doi.org/10.1007/s00253-011-3228-0

    Article  CAS  PubMed  Google Scholar 

  114. Patra B, Schluttenhofer C, Wu Y et al (2013) Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim Biophys Acta-Gene Regul Mech 1829:1236–1247. https://doi.org/10.1016/j.bbagrm.2013.09.006

    Article  CAS  Google Scholar 

  115. Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395. https://doi.org/10.1038/nchembio.2007.8 [pii]\r

  116. Xu H, Song J, Luo H et al (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9:949–952. https://doi.org/10.1016/j.molp.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiao Y, Zhang L, Gao S et al (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE. https://doi.org/10.1371/journal.pone.0029713

    Google Scholar 

  118. Xu F, Ning Y, Zhang W et al (2014) An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Funct Integr Genomics 14:177–189. https://doi.org/10.1007/s10142-013-0352-1

    Article  PubMed  CAS  Google Scholar 

  119. Wang D, Song Y, Chen Y et al (2013) Metabolic pools of phenolic acids in Salvia miltiorrhiza are enhanced by co-expression of Antirrhinum majus Delila and Rosea1 transcription factors. Biochem Eng J 74:115–120. https://doi.org/10.1016/j.bej.2013.02.014

    Article  CAS  Google Scholar 

  120. Schwinn K, Venail J, Shang Y et al (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851. https://doi.org/10.1105/tpc.105.039255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Outchkourov NS, Carollo CA, Gomez-Roldan V et al (2014) Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves. Front Plant Sci 5:519. https://doi.org/10.3389/fpls.2014.00519

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhang Y, Yan YP, Wu YC et al (2014) Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab Eng 21:71–80. https://doi.org/10.1016/j.ymben.2013.10.009

    Article  PubMed  CAS  Google Scholar 

  123. Li C, Lu S (2014) Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics 15:277. https://doi.org/10.1186/1471-2164-15-277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ji AJ, Luo HM, Xu ZC et al (2016) Genome-wide identification of the AP2/ ERF gene family involved in active constituent biosynthesis in Salvia miltiorrhiza. Plant Genome 146:1–11. https://doi.org/10.3835/plantgenome2015.08.0077

    Google Scholar 

  125. Park SU, Uddin R, Xu H et al (2008) Biotechnological applications for rosmarinic acid production in plant. Afr J Biotechnol 7:4959–4965

    CAS  Google Scholar 

  126. Akaberi M, Mehri S, Iranshahi M (2015) Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia 100:118–132. https://doi.org/10.1016/j.fitote.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  127. Zi J, Mafu S, Peters RJ (2014) To gibberellins and beyond! Surveying the evolution of (Di) terpenoid metabolism. Ann Rev Plant Biol 65:259–286. https://doi.org/10.1146/annurev-arplant-050213-035705

    Article  CAS  Google Scholar 

  128. Kai G, Xu H, Zhou C et al (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327. https://doi.org/10.1016/j.ymben.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  129. Vaccaro M, Malafronte N, Alfieri M et al (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell Tissue Organ Cult 119:65–77. https://doi.org/10.1007/s11240-014-0514-4

    Article  CAS  Google Scholar 

  130. Ikram NKBK, Zhan X, Pan X et al (2015) Stable heterologous expression of biologically active terpenoids in green plant cells. Front Plant Sci 6:129. https://doi.org/10.3389/fpls.2015.00129

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mannen K, Matsumoto T, Takahashi S et al (2014) Biochemical and biophysical research communications coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem Biophys Res Commun 443:768–774. https://doi.org/10.1016/j.bbrc.2013.12.040

    Article  CAS  PubMed  Google Scholar 

  132. Ma Y, Yuan L, Wu B et al (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823. https://doi.org/10.1093/jxb/err466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao S, Zhang J, Tan R et al (2015) Enhancing diterpenoid concentration in Salvia miltiorrhiza hairy roots through pathway engineering with maize C1 transcription factor. J Exp Bot 66:7211–7226. https://doi.org/10.1093/jxb/erv418

    Article  CAS  PubMed  Google Scholar 

  134. Grotewold E, Chamberlin M, Snook M et al (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740. https://doi.org/10.1105/tpc.10.5.721

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bovy A, De Vos R, Kemper M et al (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526. https://doi.org/10.1105/tpc.004218.growth

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang L, Ding G, Lin H et al (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8:1–13. https://doi.org/10.1371/journal.pone.0080464

    Article  Google Scholar 

  137. Wenping H, Yuan Z, Jie S et al (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279. https://doi.org/10.1016/j.ygeno.2011.03.012

    Article  PubMed  CAS  Google Scholar 

  138. Van Der Fits L, Memelink J, Van Der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53. https://doi.org/10.1111/j.1365-313x.2001.00932.x

    Article  PubMed  Google Scholar 

  139. Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA 2. EMBO J 18:4455–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang X, Luo H, Xu Z et al (2015) Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 5:11244. https://doi.org/10.1038/srep11244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The data reported in this chapter reflect the advances reported for Salvia species according to our current knowledge of the bibliographic data. We apologize if we have omitted any major work but, in spite of every effort by all the authors, it is impossible to cite every reference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Docimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Amelia, V., Ruggiero, A., Tranchida-Lombardo, V., Leone, A., Tucci, M., Docimo, T. (2017). Biosynthesis of Salvia Specialized Metabolites and Biotechnological Approaches to Increase Their Production. In: Georgiev, V., Pavlov, A. (eds) Salvia Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-73900-7_7

Download citation

Publish with us

Policies and ethics