Skip to main content
Log in

Regulation of plant glucosinolate metabolism

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Glucosinolates and their degradation products are known to play important roles in plant interaction with herbivores and micro-organisms. In addition, they are important for human life. For example, some degradation products are flavor compounds and some exhibit anticarcinogenic properties. Recent years have seen great progress made in the understanding of glucosinolate biosynthesis in Arabidopsis thaliana. The core glucosinolate biosynthetic pathway has been revealed using biochemical and reverse genetics approaches. Future research needs to focus on questions related to regulation and control of glucosinolate metabolism. Here we review current status of studies on the regulation of glucosinolate metabolism at different levels, and highlight future research towards elucidating the signaling and metabolic network that control glucosinolate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

MAM:

Methylthioalkylmalate synthase

QTL:

Quantitative trait locus

JA:

Jasmonic acid

SA:

Salicylic acid

References

  • Andreasson E, Jørgensen LB, Hoglund AS, Rask L, Meijer J (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol 127:1750–1763

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes CYP83B1 and CYP83A1 in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  PubMed  CAS  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao M (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–562

    Article  PubMed  CAS  Google Scholar 

  • Bartlet E, Kiddle G, Williams I, Wallsgrove R (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomol Exp Appl 91:163–167

    Article  CAS  Google Scholar 

  • Bodnaryk (1992) Effects of wounding on the glucosinolates in the cotyledons of oilseed rape and mustard. Phytochem 31:2671–2677

    Article  CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  PubMed  CAS  Google Scholar 

  • Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860

    Article  PubMed  CAS  Google Scholar 

  • Burow M, Bergner A, Gershenzon J, Wittstock U (2007) Glucosinolate hydrolysis in Lepidium sativum-identification of the thiocyanate-forming protein. Plant Mol Biol 63:49–61

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Champoliver L, Merrien A (1996) Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agr 5:153–160

    Article  Google Scholar 

  • Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Andreasson E (2001) Update on glucosinolate metabolism and transport. Plant Physiol Biochem 39:743–758

    Article  CAS  Google Scholar 

  • Chen S, Harmon A (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett J, Halkier BA (2003a) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hofius D, Sonnewald U, Bornke F (2003b) Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA. Plant J 36:731–740

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Clarke A, Hancock JT, Neill SJ (1999) H2O2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures. J Exp Bot 50:1863–1866

    Article  CAS  Google Scholar 

  • Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Engelen-Eigles G, Holden G, Cohen JD, Gardner G (2006) The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J Agric Food Chem 54:328–334

    Article  PubMed  CAS  Google Scholar 

  • Felice AD, Tran DH, Jorstad TS, Rossiter JT, Bones AM (2006) Glucosinolates in Arabidopsis thaliana rosette leaves show oscillatory tendencies throughout a diurnal cycle. In: Abstract of the first international conference on glucosinolate, Jena, Germany, pp 29

  • Gao M, Li G, Yang B, McCombie WR, Quiros CF (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47:666–679

    Article  PubMed  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolate content of oilseed rape (Brassica napus ssp oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates: 4. Side-chain modification in Brassica oleracea. Theor Appl Genet 93:1006–1010

    Article  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1997) Glucosinolates and disease resistance in oilseed rape (Brassica napus ssp. oleifera). Plant Pathol 46:271–275

    Article  CAS  Google Scholar 

  • Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Flugge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Chen W, Esters B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  PubMed  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  PubMed  CAS  Google Scholar 

  • Grubb CD, Zipp BJ, Muller JL, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Hall C, McCallum D, Prescott A, Mithen R (2001) Biochemical genetics of glucosinolate modification in Arabidopsis and Brassica. Theor Appl Genet 102:369–374

    Article  CAS  Google Scholar 

  • Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085

    Article  PubMed  CAS  Google Scholar 

  • Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–910

    Article  PubMed  CAS  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  PubMed  CAS  Google Scholar 

  • Hopkins RJ, Griffiths DW, Birch ANE, McKinlay RG (1998) Influence of increasing herbivore pressure on modification of glucosinolate content of Swedes (Brassica napus ssp rapifera). J Chem Ecol 24:2003–2019

    Article  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Article  PubMed  CAS  Google Scholar 

  • Husebye H, Chadchawan S, Winge P, Thangstad OP, Bones AM (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188

    Article  PubMed  CAS  Google Scholar 

  • Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to Arabidopsis defence proteome occur prior to significant transcription change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  PubMed  CAS  Google Scholar 

  • Keck AS, Finley JW (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther 3:5–12

    Article  PubMed  CAS  Google Scholar 

  • Keurentjes JJB, Fu J, de Vos CHR, Lommen A, Hall RD, Bino RJ, van der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nature Genet 38:842–849

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Matsuo T, Watannabe M, Watannabe Y (2002) Effect of nitrogen and sulphur application on the glucosinolate concentration in vegetable turnip rape (Brassica rapa L). Soil Sci Plant Nutr 48:43–49

    CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608

    Article  PubMed  CAS  Google Scholar 

  • Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T (2003) Evolutionary dynamics of an Arabidopsis resistance quantitative trait locus. Proc Natl Acad Sci USA 100:14587–14592

    Article  PubMed  CAS  Google Scholar 

  • Krumbein A, Schonhof I, Ruhlmann J, Widell S (2002) Influence of sulfur and nitrogen supply on flavour and health-affecting compounds in Brassicaceae. Plant Nutr 92:294–295

    Article  Google Scholar 

  • Kutz A, Müller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant Cell 30:95–106

    CAS  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Lee J, Kim Y, Bae Y, Kang KY, Lim D (2004) Defining the plant disulfide proteome. Electrophoresis 25:532–541

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Wang Q, Kaspi R, Parrella MP, Abel S (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43:79–96

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Kiddle GA, Bennett RN, Wallsgrove RM (1999) Local and systemic changes in glucosinolates in Chinese and European cultivars of oilseed rape (Brassica napus) after inoculation with Sclerotinia sclerotiorum (stem rot). Ann Appl Biol 134:45–58

    Article  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Muller J, Krishna P, Forreiter C (2000) A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp 90 expression after heat stress. Plant Physiol 123:949–958

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  PubMed  CAS  Google Scholar 

  • Mathys W (1977) The role of malate, oxalate and mustard oil glucosides in the evolution of zinc resistance in herbage plants. Physiol Plant 40:130–136

    Article  CAS  Google Scholar 

  • Mayton HS, Oliver C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267–271

    Article  CAS  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic Acid. J Biol Chem 275:33712–33717

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    Article  PubMed  CAS  Google Scholar 

  • Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell (in press)

  • Noret N, Meerts P, Vanhaelen M, Santos AD, Escarré J (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152:92–100

    Article  PubMed  Google Scholar 

  • Paget MSB, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Petersen BL, Andreasson E, Bak S, Agerbirk N, Halkier BA (2001) Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212:612–618

    Article  PubMed  CAS  Google Scholar 

  • Petersen BL, Chen S, Hansen CH, Halkier BA (2002) Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214:562–571

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski M, Schemenewitz A, Lopukhina A, Iler AM, Janowitz T, Weiler EW, Oecking C (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem 279:50717–50725

    Article  PubMed  CAS  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  PubMed  CAS  Google Scholar 

  • Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Pame K (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schnug E (1990) Sulphur nutrition and quality of vegetables. Sulfur Agric 14:3–7

    Google Scholar 

  • Schnug E, Haneklaus S, Murphy D (1993) Impact of sulfur fertilization on fertilizer nitrogen efficiency. Sulfur Agr 17:8–12

    Google Scholar 

  • Schonhof I, Klaring HP, Krumbein A, Schreiner M (2007a) Interaction between atmospheric CO2 and glucosinolates in broccoli. J Chem Ecol 33:105–114

    Article  PubMed  CAS  Google Scholar 

  • Schonhof I, Blankenburg D, Muller S, Krumbein A (2007b) Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. J Plant Nutr Soil Sci 170:65–72

    Article  CAS  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1256

    Article  PubMed  CAS  Google Scholar 

  • Siemens DH, Mitchell-Olds T (1998) Evolution of pest-induced defenses in Brassica plants: tests of theory. Ecol 79:632–646

    Google Scholar 

  • Skirycz S, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47:10–24

    Article  PubMed  CAS  Google Scholar 

  • Tantikanjana T, Mikkelsen MD, Hussain M, Halkier BA, Sundaresan V (2004) Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants. Plant Physiol 135:840–848

    Article  PubMed  CAS  Google Scholar 

  • Textor S, de Kraker JW, Hause B, Gershenzon J, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71

    Article  PubMed  CAS  Google Scholar 

  • Tierens K, Thomma BPH, Brouwer M, Schmidt J, Kistner K, Porzel A, Mauch-Mani B, Cammue BPA, Broekaert WF (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol 125:1688–1699

    Article  PubMed  CAS  Google Scholar 

  • Tolra RP, Poschenrieder C, Alonso R, Barcelo D, Barcelo J (2001) Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytol 151:621–626

    Article  CAS  Google Scholar 

  • Ueda H, Nishiyama C, Shimada T, Koumoto Y, Hayahi Y, Kondo M, Takahashi T, Ohtomo I, Nishimura M, Hara-Nishimura I (2006) AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol 47:164–175

    Article  PubMed  CAS  Google Scholar 

  • Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J Agric Food Chem 55:955–962

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of the benzylglucosinolate. J Biol Chem 275:14659–14666

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus epithiospecifier modifier 1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Evans E, Bilsborrow PE, Syers JK (1994) Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L). J Sci Food Agric 64:295–304

    Article  CAS  Google Scholar 

  • Zhao Y, Hull AK, Gupta N, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize for not being able to include all relevant publications due to space limitation. We thank Drs. Alice Harmon and Sophie Avarez for critical reading of the manuscript and drawing the figures, respectively. This manuscript has been much improved as a result of the excellent suggestions made by the editor and two anonymous reviewers. The work in the authors’ laboratories was supported by funds from the University of Florida and National Natural Science Foundation of China (No. 30528013 and No. 30670325) and a program for New Century Excellent Talents in Chinese Universities (NCET-05-0328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sixue Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Chen, S. Regulation of plant glucosinolate metabolism. Planta 226, 1343–1352 (2007). https://doi.org/10.1007/s00425-007-0627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0627-7

Keywords

Navigation