Skip to main content
Log in

Ectopic expression of the Osmyb4 rice gene enhances synthesis of hydroxycinnamic acid derivatives in tobacco and clary sage

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

In this work, we report the ectopic expression of the Osmyb4 rice gene, encoding the Myb4 transcription factor, in Nicotiana tabacum and Salvia sclarea. Transcriptional analysis of T2 homozygous tobacco plants overexpressing Osmyb4 revealed that Myb4 activated the transcription of several genes of the phenylpropanoid pathway such as PAL, C4H, 4CL1, 4CL2 (encoding phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate: Co A ligase1, 4-coumarate: Co A ligase2). Moreover, the Myb4 increased expression of HQT encoding hydroxycinnamoyl-CoA: quinate transferase, which specifically triggers the accumulation of chlorogenic acid (CGA). In addition, increased acccumulation of rosmarinic acid (RA) was found in transgenic plants of both species. These results open the possibility of using the Osmyb4 gene to increase the production of specific bioactive hydroxycinnamates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

4CL:

4-coumarate:CoA ligase

CGA:

chlorogenic acid

C4H:

cinnamic acid 4-hydroxylase

EPSPS:

5-enolpyruvylshikimate 3-phosphate synthase

EV:

empty vector

HPLC-DAD:

high performance liquid chromatography — with diode array detection

HQT:

hydroxycinnamoyl CoA quinate transferase

PAL:

phenylalanine ammonia lyase

RA:

rosmarinic acid

RAS:

RA synthase

RT-PCR:

reverse transcription — polymerase chain reaction

References

  • Chang, J.L., Luo, J., He, G.Y.: Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway. — Acta biochim. biophys. sin. 41: 123–130, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Chen F.: Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. — Plant Cell Rep. 19: 710–717, 2000.

    Article  CAS  Google Scholar 

  • Choi, H.K., Choi, Y.H., Verberne, M., Lefeber, A.W., Erkelens, C., Verpoorte R.: Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. — Phytochemistry 65: 857–864, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Docimo, T., Coraggio, I., De Tommasi, N., Leone, A.: Enhancing phenylpropanoid secondary metabolites in Nicotiana tabacum and Salvia sclarea by overexpression of a rice Myb4 transcription factor. — Planta med. 74: 87, 2008.

    Article  Google Scholar 

  • Farah, A., Monteiro, M., Donangelo, C.M., Lafay S.: Chlorogenic Acids from green coffee extract are highly bioavailable in humans. — J. Nutr. 138: 2309–2315, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Gangopadhyay, M., Sircar, D., Mitra, A., Bhattacharya, S.: Hairy root culture of Plumbago indica as potential source for plumbagin. — Biol. Plant. 52: 533–537, 2008.

    Article  CAS  Google Scholar 

  • Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., Weisshaar, B.: Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. — Plant mol. Biol. 57: 155–171, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Howles, P.A., Sewalt, V.J.H., Paiva, N.L., Elkind, Y., Bate, N.J., Lamb, C., Dixon, R.A.: Overexpression of Lphenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. — Plant Physiol. 112: 1617–1624, 1996.

    PubMed  CAS  Google Scholar 

  • Knobloch, K.H., Hahlbrock, K.: 4-coumarate - CoA ligase from cell-suspension cultures of Petroselinum hortense Hoffm. — partial-purification, substrate-specificity, and further properties. — Arch. Biochem. Biophys. 184: 237–248, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Korkina L.G.: Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. — Cell. mol. Biol. 53: 15–25, 2007.

    PubMed  CAS  Google Scholar 

  • Laura, M., Consonni, R., Locatelli, F., Fumagalli, E., Allavena, A., Coraggio, I., Mattana, M.: Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4. — Plant Physiol. Biochem. 48: 764–771, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Leone A., Grillo S., Monti L., Cardi T.: Molecular tailoring and boosting of bioactive secondary metabolites in medicinal plants. — In: Ranalli, P. (ed.): Improvement of Crop Plants for Industrial Uses. Pp. 471–507. Springer, Heidelberg 2007.

    Chapter  Google Scholar 

  • Mattana, M., Biazzi, E., Consonni, R., Locatelli, F., Vannini, C., Provera, S., Coraggio I.: Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. — Physiol. Plant. 125: 212–223, 2005.

    Article  CAS  Google Scholar 

  • Milkowski, C., Strack, D.: Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. — Planta 232: 19–35, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Naoumkina, M.A., Zhao, Q.A., Gallego-Giraldo, L., Dai, X.B., Zhao, P.X., Dixon, R.A.: Genome-wide analysis of phenylpropanoid defence pathways. — Mol. Plant Pathol. 11: 829–846, 2010.

    PubMed  CAS  Google Scholar 

  • Niggeweg, R., Michael, A.J., Martin, C.: Engineering plants with increased levels of the antioxidant chlorogenic acid. — Nat. Biotechnol. 22: 746–754, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Park, M.R., Yun, K.Y., Mohanty, B., Herath, V., Xu, F., Wijaya, E., Bajic, V.B., Yun, S.J., De Los Reyes, B.G.: Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. — Plant Cell Environ. 12: 2209–2230, 2010.

    Article  Google Scholar 

  • Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., Mattana, M.: Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. — Plant Cell Rep. 27: 1677–1686, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pattanaik, S., Kong, Q., Zaitlin D., Werkman, J.R., Xie, C.H., Patra, B., Yuan, L.: Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. — Planta 231: 1061–1076, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hucherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C., Wolters, S.: Evolution of rosmarinic acid biosynthesis. — Phytochemistry 70: 1663–1679, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl, M.W.: A new mathematical model for relative quantification in real-time PCR. — Nucl. Acids Res. 29: 2002–2007, 2001.

    Article  Google Scholar 

  • Saunders, J.A., McClure, J.W.: Suitability of a quantitative spectrophotometric assay for phenylalanine ammonia-lyase activity in barley, buckwheat, and pea seedlings. — Plant Physiol. 54: 412–413, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.B., Song, J.P., Yang, J.: Overexpressing Arabidopsis KNAT1 gene in Celosia plumosus L. causes modification of plant morphology. — Acta Physiol. Plant. 33: 1597–1602, 2011.

    Article  CAS  Google Scholar 

  • Treutter, D.: Managing phenol contents in crop plants by phytochemical farming and breeding — visions and constraints. — Int. J. mol. Sci. 11: 807–857, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P., Pirona, R., Di Maro A., Coraggio I., Genga A.: The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. — Physiol. mol. Plant Pathpl. 69: 26–42, 2006.

    Article  CAS  Google Scholar 

  • Vannini, C., Locatelli, F., Bracale M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., Coraggio, I.: Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. — Plant J. 37: 115–127, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Vogt T.: Phenylpropanoid biosynthesis. — Mol. Plant 3: 2–20, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Q., Shi, M., Ng, J., Wu, J.Y.: Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. — Plant Sci. 170: 853–858, 2006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Docimo.

Additional information

Acknowledgements: This work was supported by the MIUR-PRIN Project 2005 “Metabolic engineering of bioactive secondary metabolites in Nicotiana tabacum and Salvia sclarea” to A.L.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docimo, T., Mattana, M., Fasano, R. et al. Ectopic expression of the Osmyb4 rice gene enhances synthesis of hydroxycinnamic acid derivatives in tobacco and clary sage. Biol Plant 57, 179–183 (2013). https://doi.org/10.1007/s10535-012-0257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0257-1

Additional key words

Navigation