Skip to main content

Bioremediation of Heavy Metals

  • Chapter
  • First Online:
Nanotechnology, Food Security and Water Treatment

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

Human activities and industrial processes have led to worldwide heavy metal pollution. Several strategies have been developped for metal remediation. The conventional strategies are expensive, usually low in efficiency and may alter the soil nature. Here we review bioremediation using plants, microbes, e.g. bacteria, fungi, and actinobacteria, earthworms, and algae for metal removal. Bioaugmentation of microbes using plants, earthworms and algae is used to enhance the bioremediation efficiency. We discuss the importance of metagenomics, metabolomics and proteomics approach to assess the response of the living organisms under stress and how they can contribute to the improvement of the already existing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Elnaby HM, Abou-Elela GM, Ghozlan HA, Hussein H, Sabry SA (2016) Characterization and bioremediation potential of marine Psychrobacter species. Egypt J Aquat Res 42(2):193–203

    Article  Google Scholar 

  • Adhiya J, Cai X, Sayre RT, Traina SJ (2002) Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii. Coll Surf A 210(1):1–11

    Article  CAS  Google Scholar 

  • Agouborde L, Navia R (2009) Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. J Hazard Mater 167(1):536–544

    Article  CAS  Google Scholar 

  • Ahamad PYA, Kunhi AAM (2011) Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation 22:253–265

    Article  CAS  Google Scholar 

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.020

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  Google Scholar 

  • Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotech 136:389–406

    Article  CAS  Google Scholar 

  • Albarracín VH, Amoroso MJ, Abate CM (2005) Isolation and characterization of indigenous copper-resistant actinomycete strains. Chem Erde Geochem 65:145–156

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3(1):71–90

    Article  CAS  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  CAS  Google Scholar 

  • Andrade AD, Rollemberg MCE, Nobrega JA (2005) Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem 40(5):1931–1936

    Article  CAS  Google Scholar 

  • Andre J, Charnock J, Stürzenbaum SR, Kille P, Morgan AJ, Hodoson ME (2009) Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. Environ Sci Technol 43:6822–6829

    Article  CAS  Google Scholar 

  • Areco MM, Hanela S, Duran J, Afonso Mdos S (2012) Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation. J Hazard Mater 213–214:123–132

    Article  CAS  Google Scholar 

  • Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean 36(12):937–962

    CAS  Google Scholar 

  • ATSDR. Agency for toxic substances and disease registry (2011) toxicological profile for uranium- an update. U.S. department of health and human services. Public Health Service, Atlanta. Accessed at http://www.atsdr.cdc.gov/toxprofiles/tp150.html. Aug 2011

  • Auge RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci 5

    Google Scholar 

  • Azizi AB, Lim MPM, Noor ZM, Noorlidah A (2013) Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicol Environ Saf 90:13–20

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    Article  CAS  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, BT O (2015) Potential use of Pseudomona koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrome try in proteomic s: critical review upd ate from 2007 to the present. Anal Bioanal Chem 404:939–965

    Article  CAS  Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus, spp. and Arundo donax, L. Bioenergy Res 8:1500–1511

    Article  CAS  Google Scholar 

  • Bitther OP, Pilon-Smits EAH, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In: Arie Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic, Oxford, pp 309–328

    Google Scholar 

  • Boivin MEY, Greve GD, Garcia-Meza JV, Massieux B, Sprenger W, Kraak MHS, Breure AM, Rutgers M, Admiraal W (2007) Algal–bacterial interactions in metal contaminated floodplain sediments. Environ Pollut 145(3):884–894

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Bottero JY, Cases JM, Fiessinger F, Poirier JE (1980) Studies of hydrolyzed aluminum chloride solutions. I. Nature of aluminum species and composition of aqueous solutions. J Phys Chem 84:2933

    Article  CAS  Google Scholar 

  • Bouhajja E, Agathos SN, George IF (2016) Metagenomics: probing pollutant fate in natural and engineered ecosystems. Biotechnol Adv 34(8):1413–1426

    Article  CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur J Soil Biol 36(3):177–198

    Article  Google Scholar 

  • Cao L, Jiang M, Zeng Z, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassia juncea (L) Coss. var. foliosa Bailey ) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  Google Scholar 

  • Cao X, Song Y, Kai J, Yang X, Ji P (2012) Evaluation of EROD and CYP3A4 activities in earthworm Eisenia fetida as biomarkers for soil heavy metal contamination. J Hazard Mater 243:146–151

    Article  CAS  Google Scholar 

  • Chang Q, Wang G (2007) Study on the macromolecular coagulant PEX which traps heavy metals. Chem Eng Sci 62(17):4636–4643

    Article  CAS  Google Scholar 

  • Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cdhyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chen X, Wang X, Gu X, Jiang Y, Ji R (2017) Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. Sci Total Environ 574:300–306

    Article  CAS  Google Scholar 

  • Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34

    Article  CAS  Google Scholar 

  • Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ Pollut 141(3):396–401

    Article  CAS  Google Scholar 

  • Costa JSD, Kothe E, Abate CM, Amoroso MJ (2012) Unraveling the Amycolatopsis tucumanensis copper-resistome. Biometals 25(5):905–917

    Article  CAS  Google Scholar 

  • D’Annibale A, Leonardi V, Federici E, Baldi F, Zecchini F, Petruccioli M (2007) Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Appl Microbiol Biotechnol 74:1135–1144

    Article  CAS  Google Scholar 

  • Dahmani-Muller H, Van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109(2):231–238

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328(1–2):483–493

    Article  CAS  Google Scholar 

  • Das S, Raj R, Mangwani N, Dash HR, Chakraborty J (2014) 2-Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. Microb Biodegrad Biorem. Elsevier, Oxford, pp 23–54. https://doi.org/10.1016/B978-0-12-800021-2.00002-9

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • De Filippis LF, Pallaghy CK (1994) Heavy metals: sources and biological effects. In: Rai LC, Gaur JP, Soeder CJ (eds) Advances in limnology series: algae and water pollution. E. Scheizerbartsche Press, Stuttgart, pp 31–77

    Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84(2):236–246

    Article  CAS  Google Scholar 

  • Deng Z, Wang W, Tan H, Cao L, (2012). Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut. 223, 5321–5329

    Google Scholar 

  • Deng Z, Cao L, Zhang R, Shi Y, Hu L, Tan H, Cao L (2014) Enhanced phytoremediation of multi-metal contaminated soils by interspecific fusion between the protoplasts of endophytic Mucor sp.CBRF59 and Fusarium sp. CBRF14. Soil Biol Biochem 77:31–40

    Article  CAS  Google Scholar 

  • Dharni S, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2, 4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem 62(26):6138–6146

    Article  CAS  Google Scholar 

  • Dia J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Nahmani J, Lavelle P (2004) Heavy metal accumulation by two earthworm species and its relationship to total and DTPA extractable metals in soils. Soil Biol Biochem 36:91–98

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212. https://doi.org/10.3390/su7022189

    Article  CAS  Google Scholar 

  • Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    Article  CAS  Google Scholar 

  • Ekkers DM, Cretoiu MS, Kielak AM, Elsas JD (2012) The great screen anomaly-a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93:1005–1020

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  Google Scholar 

  • Emenike CU, Agamuthu P, Fauziah SH (2016) Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environ Earth Sci 75(1):26

    Article  CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Fukushima A, Kusano M (2013) Recent progress in the development of metabolome databases for plant systems biology. Front Plant Sci 4:73

    Article  Google Scholar 

  • Gabor E, Alkema W, Janssen D (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6:879–886

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  Google Scholar 

  • Ge F, Lu XP, Zeng HL, He QY, Xiong S, Jin L, He QY (2009) Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res 8(6):3006–3019

    Article  CAS  Google Scholar 

  • Gillan DC, Roosa S, Kunath B, Billon G, Wattiez R (2015) The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 17:1991–2005

    Article  CAS  Google Scholar 

  • Gil-Loaiza J, White SA, Root RA, Solís-Dominguez FA, Hammond CM, Chorover J, Maier RM (2016) Phytostabilization of mine tailings using compost-assisted direct planting: translating greenhouse results to the field. Sci Total Environ 565:451–461

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445. https://doi.org/10.1016/s0006-291x(03)00349-8

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

    Google Scholar 

  • Godlewska-ZyÅ‚kiewicz B (2001) Analytical applications of living organisms for preconcentration of trace metals and their speciation. Crit Rev Anal Chem 31(3):175–189

    Article  Google Scholar 

  • Gu JQ, Zhou WQ, Jiang BQ, Wang LH, Ma YN, Guo HY, Schulin R, Ji R, Evangelou MWH (2016) Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil. Chemosphere 145:431–437

    Article  CAS  Google Scholar 

  • Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. Methods 1(1)

    Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediat 16:179–202. https://doi.org/10.1080/15226514.2013.773273

    Article  CAS  Google Scholar 

  • Hill CB, Roessner U (2013) Metabolic pro filing of plants by GC–MS. In: Weckwerth W, Kahl G (eds) The handbook of plant metabolomics. Wiely-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 1–23

    Google Scholar 

  • Homa J, Klimek M, Kruk J, Cocquerelle C, Vandenbulcke F, Plytycz B (2010) Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. Ecotox Environ Saf 73(8):1937–1943

    Article  CAS  Google Scholar 

  • Huang C, Huang CP (1996) Application of Aspergillus oryzae and Rhizopus oryzae for Cu (II) removal. Water Res 30:1985–1990

    Article  CAS  Google Scholar 

  • Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M, Rose JK (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1(2):769

    Article  CAS  Google Scholar 

  • Jatwani C, Gupta RK, Rai R, Bansal N (2016) Effects of Hg/Co toxicity in soil on biomolecules of earthworm, eisenia fetida. Procedia Environ Sci 35:450–455

    Article  CAS  Google Scholar 

  • Jeong S, Moon HS, Shin D, Nam K (2013) Survival of introduced phosphatesolubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil. J Hazard Mater 263:441e449

    Article  CAS  Google Scholar 

  • Ji C, Cao L, Li F (2015) Toxicological evaluation of two pedigrees of clam Ruditapes philippinarum as bioindicators of heavy metal contaminants using metabolomics. Environ Toxicol Pharmacol 39:545–554. https://doi.org/10.1016/j.etap.2015.01.004

    Article  CAS  Google Scholar 

  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB (2014) Characterization of bacteria in the rhizosphere soils of polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16:321–333

    Article  CAS  Google Scholar 

  • Jusselme MD, Poly F, Lebeau T, Rouland-lefèvre C, Miambi E (2015) Effects of earthworms on the fungal community and microbial activity in root-adhering soil of Lantana camara during phytoextraction of lead. Appl Soil Ecol 96:151–158

    Article  Google Scholar 

  • Kang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69

    Article  Google Scholar 

  • Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell Publishing, pp 439–447

    Google Scholar 

  • Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9(25):3689–3698

    CAS  Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67(1):243–259

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. JIF, Norwich

    Google Scholar 

  • Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M,... & Darroudi F (1998) Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res Fundam Mol Mech Mutagen, 402(1), 185–202

    Google Scholar 

  • Kongsricharoern N, Polprasert C (1995) Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Sci Technol 31(9):109–117

    CAS  Google Scholar 

  • Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50

    Article  CAS  Google Scholar 

  • Kumar KS, Daheavy metals HU, Won EJ, Lee JS, Shin KH (2015) Microalgae – a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res 16:76–92

    Article  Google Scholar 

  • Kumari P, Reddy CRK, Jha B (2015) Methyl jasmonate-induced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant Cell Physiol 56(10):1877–1889

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  • Lamaia C, Kruatrachuea M, Pokethitiyooka P, Upathamb ES, Soonthornsarathoola V (2005) Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) Kutzing: a laboratory study. Sci Asia 31(2):121–127

    Article  Google Scholar 

  • Lambert JP, Ethier M, Smith JC, Figeys D (2005) Proteomics: from gel based to gel free. Anal Chem 77:3771–3788

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre J, García V, Pongrácz E, Keiski RL (2009) The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240(1–3):262–269

    Article  CAS  Google Scholar 

  • Lavelle P, Decaens T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15

    Article  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522

    Article  CAS  Google Scholar 

  • Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297–5304

    Article  CAS  Google Scholar 

  • Lemtiri A, Liénard A, Alabi T, Brostaux Y, Cluzeau D, Francis F, Colinet G (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl Soil Ecol 104:67–78

    Article  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant. Sedum Alfredii J of Exp Bot 58:4173–4182

    Article  CAS  Google Scholar 

  • Li H, Wei D, He C, Shen M, Zhou Z, Mei T, Xu H-M (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol 5:309–315

    Article  Google Scholar 

  • Liu J, Lu Z, Yang J, Xing M, Yu F, Guo M (2012) Effect of earthworms on the performance and microbial communities of excess sludge treatment process in vermifilter. Bioresour Technol 117:214–221

    Article  CAS  Google Scholar 

  • Liu G, Ling S, Zhan X, Lin Z, Zhang W, Lin K (2017) Interaction effects and mechanism of Pb pollution and soil microorganism in the presence of earthworm. Chemosphere

    Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metaluptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753

    Article  CAS  Google Scholar 

  • Luque-Garcia JL, Cabezas-Sanchez P, Camara C (2011) Proteomics as a tool for examining the toxicity of heavy metals. TrAC Trends Anal Chem 30(5):703–716

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001.

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • Ma C, Ming H, Lin C, Naidu R, Bolan N (2016) Phytoextraction of heavy metal from tailing waste using Napier grass. Catena 136:74–83

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278

    Article  CAS  Google Scholar 

  • Malley C, Nair J, Ho G (2006) Impact of heavy metals on enzymatic activity of substrate and on composting worms Eisenia fetida. Bioresour Technol 97:1498–1502

    Article  CAS  Google Scholar 

  • Maňáková B, Kuta J, Svobodová M, Hofman J (2014) Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability. J Hazard Mater 280:544–551

    Article  CAS  Google Scholar 

  • Mangold S, Potrykus J, Bjorn E, Lovgren L, Dopson M (2012) Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 17:75–85

    Article  CAS  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  Google Scholar 

  • Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G, Witters N, Thewys T, Tack FM (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78(1):35–41

    Article  CAS  Google Scholar 

  • Melo T, Alves E, Azevedo V, Martins AS, Neves B, Domingues P, Calado R, Abreu MH, Domingues MR (2015) Lipidomics as a new approach for the bioprospecting of marine macroalgae-Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res 8:181–191

    Article  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116(3):278

    Article  CAS  Google Scholar 

  • Mohee R, Soobhany N (2014) Comparison of heavy metals content in compost against vermicompost of organic solid waste: past and present. Resour Conserv Recycl 92:206–213

    Article  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28(2):299–311

    Article  CAS  Google Scholar 

  • Morgan AJ, Turner MP, Morgan JE (2002) Morphological plasticity in metal-sequestering earthworm chloragocytes: morphometric electron microscopy provides a biomarker of exposure in field populations. Environ Toxicol Chem 21(3):610–618

    Article  CAS  Google Scholar 

  • Moyes DL, Naglik JR (2012) The mycobiome: influencing IBD severity. Cell Host Microb 11:551–552

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Naees M, Ali Q, Shahbaz M, Ali F (2011) Role of rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci 2:220–232

    Google Scholar 

  • Natal-da Luz T, Tidona S, Jesus B, Morais PV, Sousa JP (2009) The use of sewage sludge as soil amendment. The need of an ecotoxicological evaluation. J Soils Sediments 9:246–260

    Article  CAS  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  Google Scholar 

  • Oyetibo GO, Ilori MO, Adebusoye SA, Obayori OS, Amund OO (2010) Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environ Monit Assess 168:305–314

    Article  CAS  Google Scholar 

  • Paerl HW, Steppe TF (2003) Scaling up: The next challenge in environmental microbiology. Environ Microbiol 5:1025–1038

    Article  Google Scholar 

  • Pirondini A, Visioli G, Malcevschi A, Marmiroli N (2006) A 2-D liquid – phase chromatogra phy analysis in plant tissues. J Chromatogr B 833:91–100

    Article  CAS  Google Scholar 

  • Pohl P, Schimmack W (2006) Adsorption of radionuclides (134Cs, 85Sr, 226Ra, 241Am) by extracted biomasses of cyanobacteria (Nostoc Carneum, N. Insulare, Oscillatoria Geminata and Spirulina Laxis-sima) and phaeophyceae (Laminaria digitata and L. Japonica; waste products from alginate production) at different pH. J Appl Phycol 18(2):135e143

    Article  CAS  Google Scholar 

  • Polti MA, García RO, Amoroso MJ, Abate CM (2009) Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49:285–292

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMDO (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electro J Biotechnol 6(3):285–321

    Article  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2013) Improvement of Ni phytostabilization by inoculation of Ni resistant bacillus megaterium sr28c. J Environ Manag 128:973–980

    Article  CAS  Google Scholar 

  • Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Pollut 223:511–518

    Article  CAS  Google Scholar 

  • Rittmann BE, Hausner M, Loffler F et al (2006) A vista for microbial ecology and environmental biotechnology. Environ SciTechnol 40:1096–1103

    Article  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203(1):47–56

    Article  CAS  Google Scholar 

  • Rodriguez-Campos S, Smith NH, Boniotti MB, Aranaz A (2014) Overview and phylogeny of Mycobacterium tuberculosis complex organisms: implications for diagnostics and legislation of bovine tuberculosis. Res Vet Sci 97:S5–S19

    Article  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  Google Scholar 

  • Roodbergen M, Klok C, van der Hout A (2008) Transfer of heavy metals in the food chain earthworm Black-tailed godwit (Limosa limosa): comparison of a polluted and a reference site in The Netherlands. Sci Total Environ 406(3):407–412

    Article  CAS  Google Scholar 

  • Rorat A, Wloka D, Grobelak A, Grosser A, Sosnecka A, Milczarek M, Jelonek P, Vandenbulcke F, Kacprzak M (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353

    Article  CAS  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  Google Scholar 

  • Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH (2016) In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotox Environ Saf 130:263–269

    Article  CAS  Google Scholar 

  • Sadrzadeh M, Mohammadi T, Ivakpour J, Kasiri N (2009) Neural network modeling of Pb2+ removal from wastewater using electrodialysis. Chem Eng Process 48(8):1371–1381

    Article  CAS  Google Scholar 

  • Sahariah B, Goswami L, Kim KH, Bhattacharyya P, Bhattacharya SS (2015) Metal remediation and biodegradation potential of earthworm species on municipal solid waste: a parallel analysis between Metaphire posthuma and Eisenia fetida. Bioresour Technol 180:230–236

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2016) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116

    Article  CAS  Google Scholar 

  • Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D, Steindler L (2016a) In search of alternative antibiotic drugs: quorum-quenching activity in sponges and their bacterial isolates. Front Microbiol 7

    Google Scholar 

  • Saurav K, Burgsdorf I, Teta R, Esposito G, Bar-Shalom R, Costantino V, Steindler L (2016b) Isolation of marine Paracoccus sp. Ss63 from the sponge sarcotragus sp. and characterization of its quorum-sensing chemical-signaling molecules by LC-MS/MS analysis. Isr J Chem 56(5):330–340

    Article  CAS  Google Scholar 

  • Sbihi K, Cherifi O, El Gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study. J Mater Environ Sci 3(3):497–506

    CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CIC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78(1):32–62

    Article  Google Scholar 

  • Shafiei Z, Hamid AA, Fooladi T, Yusoff WMW (2014) Surface active components: review. Curr Res J Biol Sci 6(2):89–95

    Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199–200:314–320

    Article  CAS  Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 28(4):409–420

    Article  Google Scholar 

  • Sinhorin VDG, Sinhorin AP, Teixeira JMDS, Miléski KML, Hansen PC, PSA M, Kawashita NH, Baviera AM, Loro VL (2014) Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol Environ Saf 106:181–187

    Article  CAS  Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? – a review. Environ Pollut 157(7):1981–1989

    Article  CAS  Google Scholar 

  • Sizmur T, Tilston EL, Charnock J, Palumbo-Roe B, Watts MJ, Hodson ME (2011) Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability. J Environ Monit 13(2):266–273

    Article  CAS  Google Scholar 

  • Sobariu DL, Fertu DIT, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PFX, Gavrilescu M (2016) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol

    Google Scholar 

  • Soobhany N, Mohee R, Garg VK (2015) Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae. Waste Manag 39:130–145

    Article  CAS  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  Google Scholar 

  • Stürzenbaum SR, Georgiev O, Morgan AJ, Kille P (2004) Cadmium detoxification in earthworms: from genes to cells. Environ Sci Technol 38:6283–6289

    Article  CAS  Google Scholar 

  • Sumi H, Kunito T, Ishikawa Y, Sato T, Park HD, Nagaoka K, Aikawa Y (2015) Plant roots influence microbial activities as well as cadmium and zinc fractions in metal-contaminated soil. Chem Ecol 31:105–110

    Article  CAS  Google Scholar 

  • Sun Z, Chen J, Wang X, Lv C (2016) Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of northern China. Ecol Eng 86:60–68

    Article  Google Scholar 

  • Talebi AF, Tabatabaei M, Mohtashami SK, Tohidfar M, Moradi F (2013) Comparative salt stress study on intracellular ion concentration in marine and salt-adapted freshwater strains of microalgae. Not Sci Biol 5(3):309–315

    CAS  Google Scholar 

  • Tomanek L (2014) Proteomics to study adaptations in marine organisms to environmental stress. J Proteome 105:92–106. https://doi.org/10.1016/j.jprot.2014.04.009

    Article  CAS  Google Scholar 

  • Tomar P, Suthar S (2011) Urban wastewater treatment using vermi-biofiltration system. Desalination 282:95–103

    Article  CAS  Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115(3):203–211

    Article  CAS  Google Scholar 

  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22:2505–2514

    Article  CAS  Google Scholar 

  • van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    Article  CAS  Google Scholar 

  • van Gestel CAM, Koolhaas JE, Hamers T, van Hoppe M, van Roovert M, Korsman C, Reinecke SA (2009) Effects of metal pollution on earthworm communities in a contaminated floodplain area: linking biomarker, community and functional responses. Environ Pollut 157(3):895–903

    Article  CAS  Google Scholar 

  • Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276(11):8469–8474

    Article  CAS  Google Scholar 

  • Visioli G, Marmiroli N (2013) The proteomics of heavy metal hyperaccumulation by plants. J Proteome 79:133–145

    Article  CAS  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250. 40

    Article  CAS  Google Scholar 

  • Wang D, Li H (2006) Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Biol Fertil Soils 43:120–123

    Article  Google Scholar 

  • Wang W, Deng Z, Tan H, Cao L (2013) Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Inter J Phytoremed 15:488–497

    Article  CAS  Google Scholar 

  • Wang F, Ji R, Jiang ZW, Chen W (2014) Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. Environ Pollut 186:241–247

    Article  CAS  Google Scholar 

  • Wang HQ, Zhao Q, Zeng DH, YL H, ZY Y (2015) Remediation of a magnesium -contaminated soil by chemical amendments and leaching. Land Degrad Dev 26(6):613–619. https://doi.org/10.1002/ldr.2362

    Article  Google Scholar 

  • Watanabe M, Meyer KA, Jackson TM, Schock TB, Johnson WE, Bearden DW (2015) Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha). Metabolomics. https://doi.org/10.1007/s11306-015-0789-4

  • Wei SH, Zhou QX, Wang X (2005) Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics. Environ Sci 26(3):167–171

    CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plantemicrobe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  Google Scholar 

  • Wijnhoven S, Leuven RSEW, Van Der Velde G, Jungheim G, Koelemij EI, deVries FT, Eijsackers HJP, Smits AJM (2007) Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species-and location-specific characteristics. Arch Environ Contam Toxicol 52:603–613. https://doi.org/10.1007/s00244-006-0124-1

    Article  CAS  Google Scholar 

  • Wood JL, Tang C, Franks AE (2016) Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol Biochem 103:131–137

    Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J et al (2010) Biosorpiton of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  CAS  Google Scholar 

  • Yu H, Ni SJ, He ZW, Zhang CJ, Nan X, Kong B, Weng ZY (2014) Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J Geochem Explor 146:136–148. https://doi.org/10.1016/j.gexplo.2014.08.010

    Article  CAS  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  Google Scholar 

  • Zargar SM, Mahajan R, Nazir M, Nagar P, Kim ST, Rai V, Masi A, Ahmad SM, Shah RA, Ganai NA, Agrawal GK (2017) Common bean proteomics: present status and future strategies. J Proteome. Mar 25

    Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    Article  CAS  Google Scholar 

  • Zhai R, Su S, Lu X, Liao R, Ge X, He M, Huang Y, Mai S, Lu X, Christiani D (2005) Proteomic profiling in the sera of workers occupationally exposed to arsenic and lead: identification of potential biomarkers. Biometals 18(6):603–613

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabez William Osborne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A., Osborne, J.W. (2018). Bioremediation of Heavy Metals. In: Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds) Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham. https://doi.org/10.1007/978-3-319-70166-0_9

Download citation

Publish with us

Policies and ethics