Skip to main content

Advertisement

Log in

Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Contaminated soil from a historical industrial site and containing sulfide ore ashes and aromatic hydrocarbons underwent sequential leaching by 0.5 M citrate and microbial treatments. Heavy metals leaching was with the following efficiency scale: Cu (58.7%) > Pb (55.1%) > Zn (44.5%) > Cd (42.9%) > Cr (26.4%) > Ni (17.7%) > Co (14.0%) > As (12.4%) > Fe (5.3%) > Hg (1.1%) and was accompanied by concomitant removal of organic contaminants (about 13%). Leached metals were concentrated into an iron gel, produced during ferric citrate fermentation by the metal-resistant strain BAS-10 of Klebsiella oxytoca. Concomitantly, the acidic leached soil was bioaugmented with Allescheriella sp. DABAC 1, Stachybotrys sp. DABAC 3, Phlebia sp. DABAC 9, Pleurotus pulmonarius CBS 664.97, and Botryosphaeria rhodina DABAC P82. B. rhodina was most effective, leading to a significant depletion of the most abundant contaminants, including 7-H-benz[DE]anthracene-7-one, 9,10-anthracene dione and dichloroaniline isomers, and to a marked detoxification as assessed by the mortality test with the Collembola Folsomia candida Willem. The overall degradation activities of B. rhodina and P. pulmonarius appeared to be significantly enhanced by the preliminary metal removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraitis PK, Pattrick RAD, Kelsall GH, Vaughan DJ (2004) Acid leaching and dissolution of major sulphide ore minerals: processes and galvanic effects in complex systems. Mineral Mag 68:343–351

    Article  CAS  Google Scholar 

  • Asim RK, Abhijit R, Nirmolendu R (1987) Structure of the capsular polysaccharide of Klebsiella serotype K 40. Carbohydr Res 165:77–86

    Article  Google Scholar 

  • Baldi F, Minacci A, Pepi M, Scozzafava A (2001) Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiol Ecol 36:169–174

    Article  CAS  Google Scholar 

  • Bennett JW, Faison BD (1997) Use of fungi in bioremediation. In: Hurst CJ (ed) Manual of environmental microbiology. ASM, Washington, USA, pp 758–765

    Google Scholar 

  • Berselli S, Milone G, Canepa P, Di Gioia D, Fava F (2004) Effect of cyclodextrins, humic substances and rhamnolipids on the washing of a historically contaminated soil and on the aerobic bioremediation of the resulting effluents. Biotechnol Bioeng 88:111–120

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.7 Å resolution reveals a hydroxy group on the C-beta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    Article  CAS  Google Scholar 

  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G (2006) Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere 63:244–253

    Article  CAS  Google Scholar 

  • Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135:515–522

    Article  CAS  Google Scholar 

  • D’Annibale A, Ricci M, Leonardi V, Quaratino D, Mincione E, Petruccioli M (2005) Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnol Bioeng 90:723–731

    Article  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36

    Article  Google Scholar 

  • EPA (Environmental Protection Agency)-USA (1986) Method 7380—Iron (atomic absorption, direct aspiration) (Revision 0)

  • EPA (Environmental Protection Agency)-USA (1994a) Method 3051—Microwave assisted acid digestion of sediments, sludges, soils, and oils (Revision 0)

  • EPA (Environmental Protection Agency)-USA (1994b) Method 6020—Inductively coupled plasma-mass spectrometry (Revision 0)

  • Ettler V, Komárková M, Jehlička J, Coufal P, Hradil D, Machovič V, Delorme F (2004) Leaching of lead metallurgical slag in citric solutions—implications for disposal and weathering in soil environments. Chemosphere 57:567–577

    Article  CAS  Google Scholar 

  • Fava F, Bertin L, Marchetti L (2002) Studio di “biotrattabilità” del suolo ACNA A5 136 B. In: Canepa P (ed) Progetto Sisifo—Soil Remediation Series no. 1. Poligrafica Venezia, pp 73–80

  • Fenice M, Giovannozzi Sermanni G, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and manganese-peroxidase production by Panus tigrinus on olive-mill wastewater-based media. J Biotechnol 100:77–85

    Article  CAS  Google Scholar 

  • George P, Kvaratskhelia M, Dilworth MJ, Thorneley RNF (1999) Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem. Biochem J 344:237–244

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao AM (2004) Potential of extra-cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Glusker JP (1980) Citrate conformation and chelation: enzymatic implication. Acad Chem Res 13:345–352

    Article  CAS  Google Scholar 

  • Guetta O, Milas M, Rinaudo M (2003) Structure and properties of a bacterial polysaccharide from a Klebsiella Strain (ATCC 12657). Biomacromolecules 4:1372–1379

    Article  CAS  Google Scholar 

  • Leclerc N, Meux E, Lecuire JM (2002) Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. J Hazard Mater 91:257–270

    Article  CAS  Google Scholar 

  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1995) Microsomal and cytosolic cytochrome P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius. Biotechnol Lett 17:969–974

    Article  Google Scholar 

  • Mori T, Kondo R (2002) Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 60:200–205

    Article  CAS  Google Scholar 

  • Novotny C, Erbanov0a P, Ŝaŝek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10:159–168

    Article  CAS  Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Reed BE, Carriere PC, Moore R (1996) Flushing of a Pb II contaminated soil using HCl, EDTA, and CaCl2. J Environ Eng 122:48–50

    Article  CAS  Google Scholar 

  • Ŝaŝek V (2003) Why mycoremediations have not yet come into practice. In: Sasek V, Glaser JA, Baveye Ph (eds) The utilization of bioremediation to reduce soil contamination: problems and solution. Kluwer, Netherlands, pp 247–266

    Chapter  Google Scholar 

  • Schwab AP, He Y, Banks MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866

    Article  CAS  Google Scholar 

  • Singh AV, Gupta V, Menaria KL (2001) Beneficiation studies on the flotation of pyritic sulphide ore of zinc from Rajpura Dariba Mines, Dariba, (India). J Surf Sci Technol 17:93–98

    CAS  Google Scholar 

  • Singh N, Sarkar AK, Ramchandran R, Lal K (2003) Determination of arsenic in fly ash and sulphide ore by flame atomic absorption spectrometry using hydride generator. Asian J Chem 15:1327–1330

    CAS  Google Scholar 

  • Sutherland GRJ, Schick Zapanta L, Tien M, Aust SD (1997) Role of calcium in maintaining the heme environment of manganese peroxidase. Biochemistry 36:3654–3662

    Article  CAS  Google Scholar 

  • Thöming J, Stichnote H, Mangold S, Calmano W (2000) Hydrometallurgical approaches to soil remediation-process optimization applying heavy metal speciation. Land Contam Reclam 8:19–31

    Google Scholar 

  • Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants in wood decay. J Biotechnol 41:1–7

    Article  CAS  Google Scholar 

  • Verdín J, Pogni R, Baeza A, Baratto MC, Basosi R, Vázquez-Duhalt R (2006) Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophys Chem 121:163–170

    Article  Google Scholar 

  • Vinals J, Balart MJ, Roca A (2002) Inertization of pyrite cinders and co-inertization with electric arc furnace flue dusts by pyroconsolidation at solid state. Waste Manag 22:773–782

    Article  CAS  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Interuniversitary Consortium “The Chemistry for the Environment” (I.N.C.A.) that supported, with the contribution of Italian Ministry of Environment, this work within the “Sisifo” Project (“ACNA-Bonifica di siti contaminati”). Further thanks are due to Prof. G. Cao (I.N.C.A. Laboratory, Cagliari, Italy) for providing diffractometric analyses of the ACNA soil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Petruccioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Annibale, A., Leonardi, V., Federici, E. et al. Leaching and microbial treatment of a soil contaminated by sulphide ore ashes and aromatic hydrocarbons. Appl Microbiol Biotechnol 74, 1135–1144 (2007). https://doi.org/10.1007/s00253-006-0749-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0749-z

Keywords

Navigation