Skip to main content

Bioremediation of Heavy Metals by Microbes

  • Chapter
  • First Online:
Bioremediation of Salt Affected Soils: An Indian Perspective

Abstract

Heavy metals are naturally present in the soil, but higher concentration of these elements is harmful to plants, animals, and humans. Prolonged exposure of such heavy metals can have deleterious health effects on human life. Bioremediation of these heavy metals like As, Cd, Cr, Hg, Ni, Hg, and Zn can be done by either plants or microorganisms or by the combination of two. In this chapter emphasis has been given to its microbial methods. There are certain disadvantages associated with physicochemical methods of remediation; thus bioremediation is arising as alternative to these methods. It is an environment friendly approach because it is achieved via natural processes. In this chapter efforts have been made to give brief introduction of available physicochemical and biological methods of heavy metal remediation. Bioremediation by bacteria and fungi is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605.

    Article  Google Scholar 

  • Achour, A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Research in Microbiology, 158(2), 128–137.

    Article  CAS  Google Scholar 

  • Achour-Rokbani, A., Cordi, A., Poupin, P., Bauda, P., & Billard, P. (2010). Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Applied and Environmental Microbiology, 76(3), 948–955.

    Article  CAS  Google Scholar 

  • Ahemad, M., & Khan, M. S. (2011). Pesticide interactions with soil microflora: Importance in bioremediation. In Microbes and Microbial Technology (pp. 393–413). New York: Springer.

    Google Scholar 

  • Ahmady-Asbchin, S., Safari, M., & Tabaraki, R. (2015). Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalination and Water Treatment, 54(12), 3372–3379.

    Article  CAS  Google Scholar 

  • Alexander, M. (1999). Biodegradation and bioremediation (p. 453). Houston, TX: Gulf Professional Publishing.

    Google Scholar 

  • Anton, A., Große, C., Reißmann, J., Pribyl, T., & Nies, D. H. (1999). CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. Journal of Bacteriology, 181(22), 6876–6881.

    CAS  Google Scholar 

  • Ariff, A. B., Mel, M., Hasan, M. A., & Karim, M. I. A. (1999). The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus oligosporus. World Journal of Microbiology and Biotechnology, 15(2), 291–298.

    Article  Google Scholar 

  • Baldwin, B. R., Peacock, A. D., Park, M., Ogles, D. M., Istok, J. D., McKinley, J. P., et al. (2008). Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water, 46(2), 295–304.

    Article  CAS  Google Scholar 

  • Banerjee, G., Pandey, S., Ray, A. K., & Kumar, R. (2015). Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, Flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water, Air, & Soil Pollution, 226(4), 1–9.

    Article  CAS  Google Scholar 

  • Beolchini, F., Pagnanelli, F., Toro, L., & Veglio, F. (2006). Ionic strength effect on copper biosorption by Sphaerotilus natans: Equilibrium study and dynamic modelling in membrane reactor. Water Research, 40(1), 144–152.

    Article  CAS  Google Scholar 

  • Bestawy, E. E., Helmy, S., Hussien, H., Fahmy, M., & Amer, R. (2013). Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Applied Water Science, 3(1), 181–192.

    Article  CAS  Google Scholar 

  • Blencowe, D. K., & Morby, A. P. (2003). Zn(II) metabolism in prokaryotes. FEMS Microbiology Reviews, 27, 291–311. doi:10.1016/S0168-6445(03)00041-X.

    Article  CAS  Google Scholar 

  • Blindauer, C. A. (2011). Bacterial metallothioneins: past, present, and questions for the future. Journal of Biological Inorganic Chemistry, 16(7), 1011–1024.

    Article  CAS  Google Scholar 

  • Boricha, H., & Fulekar, M. H. (2009). Pseudomonas plecoglossicida as a novel organism for the bioremediation of cypermethrin. Biology and Medicine, 1(4), 1–10.

    CAS  Google Scholar 

  • Borremans, B., Hobman, J. L., Provoost, A., Brown, N. L., & van Der Lelie, D. (2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19), 5651–5658.

    Article  CAS  Google Scholar 

  • Bossé, J. T., Gilmour, H. D., & MacInnes, J. I. (2001). Novel genes affecting urease activity in Actinobacillus pleuropneumoniae. Journal of Bacteriology, 183(4), 1242–1247.

    Article  Google Scholar 

  • Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L., & Schalk, I. J. (2010). Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environmental Microbiology Reports, 2(3), 419–425.

    Article  CAS  Google Scholar 

  • Cavet, J. S., Borrelly, G. P., & Robinson, N. J. (2003). Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiology Reviews, 27(2-3), 165–181.

    Article  CAS  Google Scholar 

  • Chauhan, N. S., Ranjan, R., Purohit, H. J., Kalia, V. C., & Sharma, R. (2009). Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiology Ecology, 67(1), 130–139.

    Article  CAS  Google Scholar 

  • Choi, S. B., & Yun, Y. S. (2004). Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnology Letters, 26(4), 331–336.

    Article  CAS  Google Scholar 

  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146(1), 270–277.

    Article  CAS  Google Scholar 

  • Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7(1), 1–5.

    Article  CAS  Google Scholar 

  • Cooksey, D. A. (1994). Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiology Reviews, 14(4), 381–386.

    Article  CAS  Google Scholar 

  • Crusberg, T. C., & Mark, S. S. (2000). Heavy metal remediation of wastewaters by microbial biotraps. In Bioremediation (pp. 123–137). Netherlands: Springer.

    Google Scholar 

  • Diels, L., Van der Lelie, N., & Bastiaens, L. (2002). New developments in treatment of heavy metal contaminated soils. Reviews in Environmental Science and Biotechnology, 1(1), 75–82.

    Article  CAS  Google Scholar 

  • Fathima, A., Aravindhan, R., Rao, J. R., & Nair, B. U. (2015). Biomass of Termitomyces clypeatus for chromium (III) removal from chrome tanning wastewater. Clean Technologies and Environmental Policy, 17(2), 541–547.

    Article  CAS  Google Scholar 

  • Fatta-Kassinos, D., Kalavrouziotis, I. K., Koukoulakis, P. H., & Vasquez, M. I. (2011). The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Science of the Total Environment, 409(19), 3555–3563.

    Article  CAS  Google Scholar 

  • Fazli, M. M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13(1), 1.

    Article  CAS  Google Scholar 

  • Forster, C. F., & Wase, D. A. J. (1997). Biosorption: The future. In J. Wase & C. Forster (Eds.), Biosorbents for metal ions (pp. 221–227). London: Taylor & Francis Ltd.

    Google Scholar 

  • Fourest, E., & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37(3), 399–403.

    Article  CAS  Google Scholar 

  • Franke, S., Grass, G., Rensing, C., & Nies, D. H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of Bacteriology, 185(13), 3804–3812.

    Article  CAS  Google Scholar 

  • Gabriel, J., Vosahlo, J., & Baldrian, P. (1996). Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnology Techniques, 10(5), 345–348.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (1992). Heavy metal pollutants: Environmental and biotechnological aspects. Encyclopedia of Microbiology, 2, 351–360.

    Google Scholar 

  • Gadd, G. M., & Mowll, J. L. (1985). Copper uptake by yeast-like cells, hyphae, and chlamydospores of Aureobasidium pullulans. Experimental Mycology, 9(3).

    Google Scholar 

  • Gadd, G. M. (2009). Heavy metal pollutants: Environmental and biotechnological aspects. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 321–334). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation, 54(1), 61–67.

    Article  CAS  Google Scholar 

  • Gikas, P. (2008). Single and combined effects of nickel (Ni (II)) and cobalt (Co (II)) ions on activated sludge and on other aerobic microorganisms: A review. Journal of Hazardous Materials, 159(2), 187–203.

    Article  CAS  Google Scholar 

  • Goux, S., Shapir, N., El Fantroussi, S., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air and Soil Pollution: Focus, 3(3), 131–142.

    Article  CAS  Google Scholar 

  • Grass, G., Fan, B., Rosen, B. P., Lemke, K., Schlegel, H. G., & Rensing, C. (2001). NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. Journal of Bacteriology, 183(9), 2803–2807.

    Article  CAS  Google Scholar 

  • Gray, N. F. (1999). Water technology: An introduction for scientist and engineer. London: Arnold.

    Google Scholar 

  • Gupta, S. D., Lee, B. T., Camakaris, J., & Wu, H. C. (1995). Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli. Journal of Bacteriology, 177(15), 4207–4215.

    Article  CAS  Google Scholar 

  • Hendricks, J. K., & Mobley, H. L. (1997). Helicobacter pylori ABC transporter: Effect of allelic exchange mutagenesis on urease activity. Journal of Bacteriology, 179(18), 5892–5902.

    Article  CAS  Google Scholar 

  • Hu, N., & Zhao, B. (2007). Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiology Letters, 267(1), 17–22.

    Article  CAS  Google Scholar 

  • Huckle, J. W., Morby, A. P., Turner, J. S., & Robinson, N. J. (1993). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Molecular Microbiology, 7(2), 177–187.

    Article  CAS  Google Scholar 

  • Hynninen, A., Tõnismann, K., & Virta, M. (2010). Improving the sensitivity of bacterial bioreporters for heavy metals. Bioengineered Bugs, 1(2), 132–138.

    Article  Google Scholar 

  • Incharoensakdi, A., & Kitjaharn, P. (2002). Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophytica. Current Microbiology, 45(4), 261–264.

    Article  CAS  Google Scholar 

  • Iskandar, N. L., Zainudin, N. A. I. M., & Tan, S. G. (2011). Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23(5), 824–830.

    Article  CAS  Google Scholar 

  • Kamika, I., & Momba, M. N. (2013). Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiology, 13(1), 1.

    Article  CAS  Google Scholar 

  • Kao, P. H., Huang, C. C., & Hseu, Z. Y. (2006). Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere, 64, 63–70.

    Article  CAS  Google Scholar 

  • Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079–1093.

    Google Scholar 

  • Lebrun, E., Brugna, M., Baymann, F., Muller, D., Lièvremont, D., Lett, M. C., et al. (2003). Arsenite oxidase, an ancient bioenergetic enzyme. Molecular Biology and Evolution, 20(5), 686–693.

    Article  CAS  Google Scholar 

  • Liu, H. L., Chen, B. Y., Lan, Y. W., & Cheng, Y. C. (2004). Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chemical Engineering Journal, 97, 195–201.

    Article  CAS  Google Scholar 

  • Ma, X., Novak, P. J., Ferguson, J., Sadowsky, M., LaPara, T. M., Semmens, M. J., et al. (2007). The impact of H2 addition on dechlorinating microbial communities. Bioremediation Journal, 11(2), 45–55.

    Article  CAS  Google Scholar 

  • Madoni, P., Davoli, D., Gorbi, G., & Vescovi, L. (1996). Toxic effect of heavy metals on the activated sludge protozoan community. Water Research, 30(1), 135–141.

    Article  CAS  Google Scholar 

  • Mameri, N., Boudries, N., Addour, L., Belhocine, D., Lounici, H., Grib, H., et al. (1999). Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Research, 33(6), 1347–1354.

    Article  CAS  Google Scholar 

  • Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., et al. (2007). CDD: A conserved domain database for interactive domain family analysis. Nucleic Acids Research, 35(suppl 1), D237–D240.

    Article  CAS  Google Scholar 

  • Martins, L. R., Lyra, F. H., Rugani, M. M., & Takahashi, J. A. (2015). Bioremediation of metallic ions by eight Penicillium species. Journal of Environmental Engineering, C4015007.

    Google Scholar 

  • Mezaguer, M., El Hayet Kamel, N., Lounici, H., & Kamel, Z. (2013). Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium (VI) from uranium leachate. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 393–403.

    Article  CAS  Google Scholar 

  • Mishra, A., & Malik, A. (2012). Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Research, 46(16), 4991–4998.

    Article  CAS  Google Scholar 

  • Morais, P. V., Branco, R., & Francisco, R. (2011). Chromium resistance strategies and toxicity: What makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 24(3), 401–410.

    Article  CAS  Google Scholar 

  • Muraleedharan, T. R., & Venkobachar, C. (1990). Mechanism of biosorption of Copper (Ii) by Ganoderma lucidum. Biotechnology and Bioengineering, 35(3), 320–325.

    Article  CAS  Google Scholar 

  • Murthy, S., Bali, G., & Sarangi, S. K. (2013). Effect of lead on metallothionein concentration in lead resistant bacteria Bacillus cereus isolated from industrial effluent. African Journal of Biotechnology, 10(71), 15966–15972.

    Google Scholar 

  • Naik, M. M., & Dubey, S. K. (2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Current Microbiology, 62(2), 409–414.

    Article  CAS  Google Scholar 

  • Naik, M. M., Pandey, A., & Dubey, S. K. (2012). Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79, 129–133.

    Article  CAS  Google Scholar 

  • National Research Council. (1993). In situ bioremediation: When does it work? Washington, DC: National Academy Press.

    Google Scholar 

  • Navarro, C., Wu, L. F., & Mandrand‐Berthelot, M. A. (1993). The nik operon of Escherichia coli encodes a periplasmic binding‐protein‐dependent transport system for nickel. Molecular Microbiology, 9(6), 1181–1191.

    Article  CAS  Google Scholar 

  • Ng, W. J., & Tjan, K. W. (2006). Industrial wastewater treatment (No. 628.3 N48 2006.). Imperial College Press.

    Google Scholar 

  • Nies, D. H. (2003). Efflux‐mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2‐3), 313–339.

    Article  CAS  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  • Nies, D. H., & Silver, S. (1995). Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology, 14(2), 186–199.

    Article  CAS  Google Scholar 

  • Niu, H., Xu, X. S., Wang, J. H., & Volesky, B. (1993). Removal of lead from aqueous solutions by Penicillium biomass. Biotechnology and Bioengineering, 42(6), 785–787.

    Article  CAS  Google Scholar 

  • Nourbakhsh, M., Sag, Y., Özer, D., Aksu, Z., Kutsal, T., & Caglar, A. (1994). A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters. Process Biochemistry, 29(1), 1–5.

    Article  CAS  Google Scholar 

  • Nucifora, G., Chu, L., Misra, T. K., & Silver, S. (1989). Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proceedings of the National Academy of Sciences, 86(10), 3544–3548.

    Article  CAS  Google Scholar 

  • Ock Joo, J., Choi, J. H., Kim, I. H., Kim, Y. K., & Oh, B. K. (2015). Effective bioremediation of cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans. Biotechnology and Bioprocess Engineering, 20(5), 937–941.

    Article  CAS  Google Scholar 

  • Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90(1), 71–74.

    Article  CAS  Google Scholar 

  • Peitzsch, N., Eberz, G., & Nies, D. H. (1998). Alcaligenes eutrophus as a bacterial chromate sensor. Applied and Environmental Microbiology, 64(2), 453–458.

    CAS  Google Scholar 

  • Prasenjit, B., & Sumathi, S. (2005). Uptake of chromium by Aspergillus foetidus. Journal of Material Cycles and Waste Management, 7(2), 88–92.

    Article  CAS  Google Scholar 

  • Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935–944.

    CAS  Google Scholar 

  • Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2-3), 197–213.

    Article  CAS  Google Scholar 

  • Rifaat, H. M., Mahrous, K. F., & Khalil, W. K. (2009). Effect of heavy metals upon metallothioneins in some Streptomyces species isolated from Egyptian soil. Journal of Applied Sciences in Environmental Sanitation, 4(3), 197–206.

    Google Scholar 

  • Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal–contaminated soils. Microbial Ecology, 37(3), 218–224.

    Article  CAS  Google Scholar 

  • Saha, R., Saha, N., Donofrio, R. S., & Bestervelt, L. L. (2013). Microbial siderophores: A mini review. Journal of Basic Microbiology, 53(4), 303–317.

    Article  Google Scholar 

  • Şahan, T., Ceylan, H., & Aktaş, N. (2015). Optimization of biosorption of Zn (II) ions from aqueous solutions with low-cost biomass Trametes versicolor and the evaluation of kinetic and thermodynamic parameters. Desalination and Water Treatment, 57, 1–12.

    Google Scholar 

  • Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17), 4231–4235.

    Article  CAS  Google Scholar 

  • Savvaidis, I., Hughes, M. N., & Poole, R. K. (2003). Copper biosorption by Pseudomonas cepacia and other strains. World Journal of Microbiology and Biotechnology, 19(2), 117–121.

    Article  CAS  Google Scholar 

  • Schalk, I. J., Hannauer, M., & Braud, A. (2011). New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology, 13(11), 2844–2854.

    Article  CAS  Google Scholar 

  • Schelert, J., Dixit, V., Hoang, V., Simbahan, J., Drozda, M., & Blum, P. (2004). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. Journal of Bacteriology, 186(2), 427–437.

    Article  CAS  Google Scholar 

  • Scherer, J., & Nies, D. H. (2009). CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Molecular Microbiology, 73(4), 601–621.

    Article  CAS  Google Scholar 

  • Schmidt, T., & Schlegel, H. G. (1994). Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. Journal of Bacteriology, 176(22), 7045–7054.

    Article  CAS  Google Scholar 

  • Shao, Z., & Sun, F. (2007). Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles, 11(3), 435–443.

    Article  CAS  Google Scholar 

  • Siddiquee, S., Aishah, S. N., Azad, S. A., Shafawati, S. N., & Naher, L. (2013). Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Advances in Bioscience and Biotechnology, 4, 570–583.

    Article  CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 71(2), 599–608.

    Article  CAS  Google Scholar 

  • Singh, S. K., Grass, G., Rensing, C., & Montfort, W. R. (2004). Cuprous oxidase activity of CueO from Escherichia coli. Journal of Bacteriology, 186(22), 7815–7817.

    Article  CAS  Google Scholar 

  • So, N. W., Rho, J. Y., Lee, S. Y., Hancock, I. C., & Kim, J. H. (2001). A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiology Letters, 194(1), 93–98.

    Article  CAS  Google Scholar 

  • Sone, Y., Pan-Hou, H., Nakamura, R., Sakabe, K., & Kiyono, M. (2010). Roles played by MerE and MerT in the transport of inorganic and organic mercury compounds in Gram-negative bacteria. Journal of Health Science, 56(1), 123–127.

    Article  Google Scholar 

  • Spain, A., & Alm, E. (2003). Implications of microbial heavy metal tolerance in the environment. Reviews in Undergraduate Research, 2, 1–6.

    Google Scholar 

  • Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine-related and distillery wastewaters: A review. Bioremediation Journal, 12(2), 70–87.

    Article  CAS  Google Scholar 

  • Suh, J. H., Yun, J. W., & Kim, D. S. (1999). Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Engineering, 21(1), 1–4.

    CAS  Google Scholar 

  • Tabaraki, R., Ahmady-Asbchin, S., & Abdi, O. (2013). Biosorption of Zn (II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. Journal of Environmental Chemical Engineering, 1(3), 604–608.

    Article  CAS  Google Scholar 

  • Tangaromsuk, J., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2002). Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresource Technology, 85(1), 103–105.

    Article  CAS  Google Scholar 

  • Teszos, M., & Volesky, B. (1982). Copper biosorption by chemically treated Micrococcus luteus cells. Biotechnology and Bioengineer, 24(2), 8–15.

    Google Scholar 

  • Tobin, J. M., & Roux, J. C. (1998). Mucor biosorbent for chromium removal from tanning effluent. Water Research, 32(5), 1407–1416.

    Article  CAS  Google Scholar 

  • Townsley, C. C., & Ross, I. S. (1985). Copper uptake by Penicillium spinulosum. Microbios, 44, 125–134.

    CAS  Google Scholar 

  • Tripathi, M., Munot, H. P., Shouche, Y., Meyer, J. M., & Goel, R. (2005). Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Current Microbiology, 50(5), 233–237.

    Article  CAS  Google Scholar 

  • Tsezos, M., & Volesky, B. (1981). Biosorption of uranium and thorium. Biotechnology and Bioengineering, 23(3), 583–604.

    Article  CAS  Google Scholar 

  • Tunali, S., Cabuk, A., & Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 115(3), 203–211.

    Article  CAS  Google Scholar 

  • Umrania, V. V. (2006). Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresource Technology, 97(10), 1237–1242.

    Article  CAS  Google Scholar 

  • Uslu, G., & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature. Journal of Hazardous Materials, 135(1), 87–93.

    Google Scholar 

  • Valls, M., & De Lorenzo, V. (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews, 26(4), 327–338.

    Article  CAS  Google Scholar 

  • Volesky, B. (1990). Biosorption by fungal biomass. In B. Volesky (Ed.), Biosorption of heavy metals (pp. 139–171). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy, 59(2), 203–216.

    Article  CAS  Google Scholar 

  • Wireman, J., Liebert, C. A., Smith, T., & Summers, A. O. (1997). Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Applied and Environmental Microbiology, 63(11), 4494–4503.

    CAS  Google Scholar 

  • Yalçinkaya, Y., Arica, M. Y., Soysal, L., Denizli, A., Genç, Ö., & Bektaş, S. (2002). Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turkish Journal Chemistry, 26(3), 441–452.

    Google Scholar 

  • Yang, H. C., Cheng, J., Finan, T. M., Rosen, B. P., & Bhattacharjee, H. (2005). Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. Journal of Bacteriology, 187(20), 6991–6997.

    Article  CAS  Google Scholar 

  • Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557–2561.

    Article  CAS  Google Scholar 

  • Zaki, S., & Farag, S. (2010). Isolation and molecular characterization of some copper biosorped strains. International Journal of Environmental Science and Technology, 7(3), 553–560.

    Article  CAS  Google Scholar 

  • Zhang, S., Zhang, X., Chang, C., Yuan, Z., Wang, T., Zhao, Y., et al. (2016). Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere, 150, 33–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Choudhary, M., Kumar, R., Datta, A., Nehra, V., Garg, N. (2017). Bioremediation of Heavy Metals by Microbes. In: Arora, S., Singh, A., Singh, Y. (eds) Bioremediation of Salt Affected Soils: An Indian Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-48257-6_12

Download citation

Publish with us

Policies and ethics