Skip to main content

Endophytic Fungi Bioremediation

  • Chapter
  • First Online:
Endophytes: Crop Productivity and Protection

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 16))

Abstract

Fungal endophytes are isolated from almost every host plant studied so far. The relationship between endophytes and host plants involves both mutualism and antagonism. Plants have many mechanisms to limit the growth of endophytes which include producing a variety of toxic metabolites such as terpenoides. But over a long period of co-evolution, endophytes have gradually formed a variety of tolerant mechanisms towards host metabolites by producing exo enzymes and mycotoxins. These enzymes include pectinase, cellulase, lipoidase, proteinase, phenol oxidase and lignin catabolic enzymes. When host plants die the fungi utilize the carbon source, plant residues such as glucose, oligosaccharides, cellulose, hemicelluloses, lignin, keratin, pectin, lipids and proteins and decomposes effectively. These enzymes may also degrade macromolecule compounds into small molecules or convert more toxic substances into less toxic in order to increase their adaptability. The use of fungi to clean up environmental pollutants has gained momentum in the past few years. However, most studies have focussed on white rot fungi and use of endophytic fungi might be a novel and important source for degradation of toxic pollutants including hydrocarbons, polychlorinated biphenyl’s (PCBs), polyaromatic hydrocarbons (PAHs), radionuclides, and metals. Phytoremediation is another important bioremediation aspects of endophytic fungi in soils contaminated with hydrocarbons and heavy metals. Depolymerisations is one of the most efficient methods of plastic waste management by endophytic fungal enzymatic action. Complex polymers disintegrate into short chains of oligomers, dimers and monomers which can act as a source of carbon and energy. The enzymes produced by the microbes vary with the species even between strains of the same species. Enzymes are very specific in their action on substrates so that different enzymes help in the degradation of various types of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267e274

    Google Scholar 

  • Banerjee DG, Strobel B, Geary J, Sears D, Ezra O, Liarzi J, Coombs (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1:179–186

    Google Scholar 

  • Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503

    Article  CAS  PubMed  Google Scholar 

  • Borges W, Borges K, Bonato P, Said S, Pupo MT (2009) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163

    Article  CAS  Google Scholar 

  • Brundett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Shulz B et al (ed) Soil biology, vol 9. Microbial root endophytes. pp 281

    Google Scholar 

  • Champreda V, Kanokratana P, Sripang R, Tanapongpipat S, Eurwilaichitr L (2007) Purification, biochemical characterization, and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide-forming amylase from anendophytic ascomycete Fusicoccum sp. BCC4124. Biosci Biotechnol Biochem 71(8):2010–2020

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chuan-Chao D (2013) Recent advances on endophytic fungi optimising soil environment. Int J Environ Eng 5(4):387–404

    Article  Google Scholar 

  • Chomcheon P, Wiyakrutta S, Sriybolmos N, Nattaya N, Mahidol C, Ruchirawat S, kittakoop P (2009) Metabolites from the endophytic mitosporic Dothideomycete species. LRUB20 Phytochemistry 70(1):121–127

    Google Scholar 

  • Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothione in and polyamine biosynthetic gene expression. Annl Bot 106:791–802

    Article  CAS  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  CAS  PubMed  Google Scholar 

  • Collin HC, Andersen RA, Steinnes E (2003) Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. J Phys IV France 107(1):311–314

    Article  Google Scholar 

  • Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F (2014) Potent and specific inhibition of glycosidases by small artificial binding proteins (Affitins). Plos One. http://doi.org/10.1371/journal.pone.0097438

  • Costa LSR, Azevedo JL, Pereira JO, Carneiro ML, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615

    Article  Google Scholar 

  • Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernández-Perrino FJ, Gutiiérrez- Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261–270

    Article  Google Scholar 

  • Dai J, Krohn K, Elsasser B, Florke U, Draeger S, Schulz B, Pescitelli G, Salvadori P, Antus, S, Kurtan T (2007) Metabolic products of the endophytic fungus Microsphaeropsis sp. from Larix decidua. Eur J Org Chem 4845–4854

    Google Scholar 

  • Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Damasso MCT, Passionoto MA, Freitas SC, Freire DMG, Lago RCA, Couri S (2008) Utilization of agro industrial residues for lipase production by solid–state fermentation. Braz J Microb 39:676–681

    Article  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu La, Tan H, Cao L (2013) Enhancement of phytoremediation of Cdand Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Chemosphere 91(1):41–47

    Google Scholar 

  • Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  • Espinosa EE, Martínez GME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413

    Article  Google Scholar 

  • Eyberger AL, Rajeswari D, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce Podophyllotoxin. J Nat Prod 69(8):1121–1124

    Google Scholar 

  • Farnet AM, Gil G, Ruaudel F, Chevremont AC Ferre E (2009) Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Geoderma 134(3):267–271

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(3):3–49

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling (2009) Bacterial endophyte mediated naphthalene phytoprotection and phytoremediation. Microbial Lett 296(2):226–234

    Google Scholar 

  • Ghimire SR, Nikki D, Bell JD, Krishnamurthy YL, Craven KD (2010) Biodiversity of fungal endophyte communities inhabiting switch grass (Panicum virgatum L) growing in the native tall grass prairie of northern Oklahoma. Fungal Divers 47(1):19–27

    Google Scholar 

  • Granit T, Chen Y, Hadar Y (2007) Humic acid bleaching by white-rot fungi isolated from biosolids compost. Soil Biol Biochem 39(5):1040–1046

    Article  CAS  Google Scholar 

  • Harvey PJ, Thurston CF (2009) The biochemistry of Lignolytic fungi. Cambridge University Press, pp 24–51

    Google Scholar 

  • Hirschmann GS, Hormazabal E, Astudillo L, Rodriguez J, Theoduloz (2005) Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World J Microbiol Biotechnol 21:27–32

    Google Scholar 

  • Iqbal HM, Kyazze G, Keshwaraj J (2013) Biotechnology application of biomass. Bio Resour 8(2):3151–1356

    Google Scholar 

  • Jiang M, Cao L, Zhang R (2008) Effects of Acacia (Acacia auriculaeformis A. Cunn)-associated fungi on mustard (Brassica juncea (L.) Coss. var. Foliosa Bailey) growth in Cd- and Ni-contaminated Soils. Lett Appl Microbiol 47(6):561–565

    Article  CAS  PubMed  Google Scholar 

  • Jordaan A, Taylor JE, Rossenkhan R (2006) Occurrence and possible role of endophytic fungi associated with seed pods of Colophospermum mopane (Fabaceae) in Botswana. South Afr J Bot 72:245–255

    Article  Google Scholar 

  • Jordan MJ, Lechevalier MP (1975) Effects of zinc-smelter emissions on forest soil microflora. Can J Microbiol 21(11):1855–1865

    Article  CAS  PubMed  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene. Int Bioremediat Biodegradation 45:57–88

    Google Scholar 

  • Karsten P (2008) Selenium induces manganese-dependent peroxidase production by the white-rot fungus Bjerkandera adusta (Willdenow). Biol Trace Elem Res 123(1–3):211–217

    Google Scholar 

  • Khan Z, Dotty S (2011) Endophyte-assisted phytoremediation. Curr Top Plant Biol 12:97–105. doi:10.1007/978-94-007-1599-8.5

  • Kim S, Shin DS, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67:448–450

    Article  CAS  PubMed  Google Scholar 

  • Koide K, Osono T, Takeda H (2005) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286

    Article  Google Scholar 

  • Krishnamurthy YL, Shashikala J, Shankar Naik B (2009) Diversity and seasonal variation of endophytic fungal communities associated with some medicinal trees of Western Ghats. Southern India. Sydowia 61(2):255–266

    Google Scholar 

  • Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidiumpullulans. Can J Microbiol 51:773–776

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum Isolated from Catharanthus roseus. PLoS ONE 8(9):e71805

    Google Scholar 

  • Lee JC, Lobokovsky NB, Pliam NB, Strobel GA, Clardy JC (1995) Subglutinol A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077

    Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Google Scholar 

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Leonardi V, Sasekb V, Petrucciolia M, Dannibalea A, Erbanováb P, Cajthamlb T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeter Biodeg 60:165–170

    Google Scholar 

  • Li JY, Strobel GA (2001) Jestorene and hydroxy Jestorene antioomycete cyclohexanone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265

    Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Likar M (2011) Dark septate endophytes and mycorrhizal fungi of trees affected by pollution. In: Maria A, Frank AC (eds) Endophytes of forest trees. Springer, Netherlands, pp 189–201

    Chapter  Google Scholar 

  • Liu Q, Parson AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920

    Article  Google Scholar 

  • Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112

    Google Scholar 

  • Ma Y, Rajkumar M, Vicente JA, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Google Scholar 

  • Marco-Urrea E, Gabarrell X, Caminal G (2008) Aerobic degradation by white-rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). J Chem Technol Biotechnol 83:1190–1196

    Article  CAS  Google Scholar 

  • Marlida Y, Saari N, Hassan Z, Radu S (2000) Raw starch degrading enzyme from newly isolated strains of endophytic fungi. World J Microbiol Biotechnol 16:573–578

    Article  CAS  Google Scholar 

  • Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte free and infected peppermint (Mentha piperita L.): Chemical partitioning of a symbiosis. Microbial Ecol 54:685–696

    Article  CAS  Google Scholar 

  • Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10(7):1801–1810

    Article  PubMed  Google Scholar 

  • Nikiforova SV, Pozdnyakova NN, Turkovskaya OV (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus Ostreatus D1. Curr Microbiol 58(6):554–558

    Article  CAS  PubMed  Google Scholar 

  • Oliveira ACD, Farion Watanabe FM, Vargas JVC, Rodrigues MLF, Mariano AB (2012) Production of methyl oleate with a lipase from an endophytic yeast isolated from castor leaves. Biocatal Agric Biotechnol 1:295–300

    CAS  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135

    Article  CAS  Google Scholar 

  • Osono T, Takeda H (2001) Effects of organic chemical quality and mineral nitrogen addition on lignin and holocellulose decomposition of beech leaf litter by Xylaria sp. Eur J Soil Biol 37:17–23

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Petrini O, Petrini LE (1985) Xylareaceaous fungi as endophytes. Sydowia 38:216–234

    Google Scholar 

  • Pieterse CMJ, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    Article  CAS  PubMed  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Puri SC, Verma V, Amina T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68(12):1717–1719

    Google Scholar 

  • Rabie GH (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology 33:41–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas (2010) Potential of Siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and nutritional role. New Phytol 182:314–330

    Google Scholar 

  • Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyper accumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Article  PubMed  Google Scholar 

  • Ruotsalainen AL, Markkola A, Kozlov MV (2007) Root fungal colonization in Deschampsiaflexuosa: effects of pollution and neighboring trees. Environ Pollut 147(3):723–728

    Article  CAS  PubMed  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittrmiller PA, Nunez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger LA, Slack CB, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5

    Article  Google Scholar 

  • Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109(1):121–126

    Google Scholar 

  • Schardl CL (2010) The epichloae symbionts of the grass subfamily Poaideae. Ann Mo Bot Gard 97:646–665

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Shankar Naik B, Krishnamurthy YL (2010) Endophytes: the real untapped high energy biofuel resource. Curr Sci 98:7(10):883

    Google Scholar 

  • Shankar Naik B, Shashikala J, Krishnamurthy YL (2006) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 3:290–296

    Google Scholar 

  • Shankar Naik B, Shashikala J, Krishnamurthy YL (2008) Diversity of endophytic fungal communities in shrubby medicinal plants of Western Ghat region, Southern India. Fungal Ecol 1:89–93

    Article  Google Scholar 

  • Shankar Naik B, Krishnappa M, Krishnamurthy YL (2014) Biodiversity endophytic fungi from seven herbaceous medicinal plants of Malnad region, Western Ghats, southern India. J Forestry Res 25(3):707–711

    Article  CAS  Google Scholar 

  • Shen L, Ye YH, Wang XT, Zhu HL, Xu C, Song YC, Li H, Tan RX (2006) Structure and total synthesis of aspernigerin: a novel cytotoxic endophyte metabolite. Chem Eur J 12:4393–4396

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Dai CC, Wu YC, Yuan ZL (2004) Study on the degradation of wheat straw by endophytic fungi. Acta Sci Circum 24(1):144–149

    CAS  Google Scholar 

  • Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festucapratensis. Int J Phytoremed 12(6):535–549

    Article  CAS  Google Scholar 

  • Song S, Otkur M, Zhang Z, Tang Q (2007) Isolation and characterization of endophytic microorganisms in Glaycyrrhiza inflat from Xinjiang. Microbiology 5:867–870

    Google Scholar 

  • StÄ™pniewska Z, Kuźniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216

    Google Scholar 

  • Stinson M, Ezra D, Hess WM, Seras J, Strobel G (2003) An endophytic Gliocladium sp of Euryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922

    Google Scholar 

  • Strobel GA, Miller RV, Miller C, Condron M, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Suberkropp K, Weyers HS (1996) Application of fungal and bacterial production methodologies to decomposing leaves in streams. Appl Environ Microbiol 62(5):1610–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JQ, Guo LD, Zang W, Ping WX, Chi DF (2008) Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Sci China, Ser C Life Sci 51:751–759

    Article  Google Scholar 

  • Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Func Ecol 22(6):955–963

    Article  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trend Plant Sci 17:260–270

    Article  CAS  Google Scholar 

  • Tian LS, Dai CC, Zhao YT, Zhao M, Yong YH, Wang XX (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China. Environ Sci 27(6):757–762

    CAS  Google Scholar 

  • Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204

    Google Scholar 

  • Tomsheck A, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J (2010) Hypoxylon sp. an endophyte of Persea indica producing 1,8-cineole and other bioactive volatile with fuel potential. Microb Ecol 60:903–914

    Google Scholar 

  • Torres M, Dolcet MM, Sala N, Canela R (2003) Endophytic fungi associated with mediterranean plants as a source of mycelium-bound lipases. J Agric Food Chem 51:3328–3333

    Article  CAS  PubMed  Google Scholar 

  • Urairaj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophyticxylariaceae. Fungal Divers 13:209–219

    Google Scholar 

  • Wang Y, Dai CC (2011) Endophytes: a potential source for biosynthesis transformation and biodegradation. Ann Microbiol 61:207–215

    Google Scholar 

  • Wei W, McCaster, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Mirmda M, Ngayen M, Wilhelmg J, Komp C, Tomse R, Wang X, Jia P, Lendi P, Oefner PJ, David L, Dietrich F, LiY, Davi SR, Steinmetz LM (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM 789. Proc Natl Acad Sci USA 104(31):12825–12830

    Google Scholar 

  • Weyens N, Lelie DV, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant microbe partnership to improve Biomass production and remediation. Trends Biotechnol 27(10):591–598

    Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, VangronsveldR (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427. doi:10.1016/j.envpol.2010.04.004

  • Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Wu B, Wu L, Ruan L, Ge M, Chen D (2009) Screening of endophytic fungi with antithrombotic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Curr Microbiol 58:522–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu MJ, Shi XD, Zhao ZW (2008) Dark septate endophyte fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46(6):624–632

    Article  PubMed  Google Scholar 

  • Zhang CM, Jiang L, Zhang ZG, Tang L (2011) Effects of propionic and pH on ethanol fermentation by saccharomyces in Cassava. Appl Biochem Biotech 165(3–4):883–891

    Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse A, Werner C (2002) Biotransformation of 2-Benzo-xazolinone and 2-Hydroxy-1, 4-Benzoxazin-3-one by endophytic fungi isolated from Aphelandratetragona. Appl Environ Microbiol 48(3):4863–4870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelugere L. Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamurthy, Y.L., Naik, B.S. (2017). Endophytic Fungi Bioremediation. In: Maheshwari, D., Annapurna, K. (eds) Endophytes: Crop Productivity and Protection. Sustainable Development and Biodiversity, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-66544-3_3

Download citation

Publish with us

Policies and ethics