Skip to main content

TXT-tool 1.081-6.1 A Comparative Study of the Binary Logistic Regression (BLR) and Artificial Neural Network (ANN) Models for GIS-Based Spatial Predicting Landslides at a Regional Scale

  • Chapter
  • First Online:
Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools

Abstract

This teaching tool is to present how to generate the landslide susceptibility maps using binary logistic regression (BLR) and artificial neural network (ANN) methods at a regional scale. The study area is one of most landslide-prone areas in Japan. First, the landslide inventory data from the National Research Institute for Earth Science and Disaster Prevention (NIED) were randomly partitioned into two parts: training and testing data. Then, 10 m DEM data and geology map were analyzed to extract the landslide predisposing factors. Next, the susceptibility maps were produced in a geographic information system (GIS) environment. Then, the receiver operating characteristics (ROC) was used to assess the model accuracy. Validation results show that both of two methods can be obtained with acceptable results. The maps can provide useful information for the future planning of hazard mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: part I. Case studies, monitoring techniques and environmental considerations. Eng Geol 81:419–431

    Article  Google Scholar 

  • Chang T-C, Chao R-J (2006) Application of back-propagation networks in debris flow prediction. Eng Geol 85:270–280. doi:10.1016/j.enggeo.2006.02.007

    Article  Google Scholar 

  • Chung C-J, Fabbri AG (1993) The representation of geoscience information for data integration. Nonrenewable Resour 2:122–139. doi:10.1007/BF02272809

    Article  Google Scholar 

  • Costanzo D, Rotigliano E, Irigaray C et al (2012) Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazards Earth Syst Sci 12:327–340. doi:10.5194/nhess-12-327-2012

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Process Landforms 28:527–545. doi:10.1002/Esp.456

    Article  Google Scholar 

  • Dou J, Oguchi T, Hayakawa YSS et al (2014) Susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, central Japan. Landslide Sci a Safer Geoenvironment 2:483–489. doi:10.1007/978-3-319-05050-8_65

    Google Scholar 

  • Dou J, Chang K, Chen S et al (2015a) Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm. Remote Sens pp 4318–4342. doi:10.3390/rs70404318

  • Dou J, Paudel U, Oguchi T et al (2015b) Shallow and Deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area. Japan 26:227–239. doi:10.3319/TAO.2014.12.02.07(EOSI)1

    Google Scholar 

  • Dou J, Tien Bui D, Yunus Ap et al (2015c) Optimization of causative factors for landslide susceptibility evaluation using remote sensing and gis data in parts of Niigata, Japan PLoS One 10:e0133262. doi:10.1371/journal.pone.0133262

  • Dou J, Yamagishi H, Pourghasemi HR et al (2015d) An integrated artificial neural network model for the landslide susceptibility assessment of Osado. Nat Hazards. doi:10.1007/s11069-015-1799-2

    Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR et al (2015e) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78:1749–1776. doi:10.1007/s11069-015-1799-2

    Article  Google Scholar 

  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195:169–183. doi:10.1016/S0012-821X(01)00589-1

    Article  Google Scholar 

  • Hadji R, Boumazbeur AE, Limani Y et al (2013) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302:224–237. doi:10.1016/j.quaint.2012.11.027

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366. doi:10.1016/j.enggeo.2006.03.004

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41. doi:10.1007/s10346-006-0047-y

    Article  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. doi:10.1007/s11135-006-9018-6

  • Prasad R, Pandey a, Singh KP et al (2012) Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions. Adv Sp Res 50:363–370. doi:10.1016/j.asr.2012.04.010

  • Shi H-Y, Lee K-T, Lee H-H et al (2012) Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PLoS ONE 7:e35781. doi:10.1371/journal.pone.0035781

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam Using support vector machines, decision tree, and naïve bayes models. Math Probl Eng 2012:1–26. doi:10.1155/2012/974638

    Article  Google Scholar 

  • Turner AK, Schuster RL (eds) (1996) Landslide; investigation and mitigation, special report 247, Transportation Research Board, National Research Council, National Academy Press, Washington DC, 673p

    Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA 85:274–287. doi:10.1016/j.catena.2011.01.014

  • Yamagishi H (2008) GIS mapping of landscape and disasters of Sado Island, Japan. In: the international archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XXXVII. Part B7. Beijing 2008. pp 1429–1432

    Google Scholar 

  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B (2013) Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6:2873–2888

    Article  Google Scholar 

  • Zhu Z, Yu J, Wang H et al (2015) Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions. Water 7:4385–4408. doi:10.3390/w7084385

    Article  Google Scholar 

  • Zhu Z, Wang H, Yu J, Dou J (2016) On the kaolinite floc size at the steady state of flocculation in a turbulent flow. pp 1–16. doi:10.1371/journal.pone.0148895

Download references

Acknowledgements

We would like to express our deep appreciation to Midori NET Niigata and Sado City for providing the ortho photographs of Sado Island and the NIED for providing the landslide data. Here, Dou highly appreciates Dr. Takashi Ougchi’s and Dr. Yuichi S. Hayakawa’s guidance and support from the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Dou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dou, J., Yamagishi, H., Zhu, Z., Yunus, A.P., Chen, C.W. (2018). TXT-tool 1.081-6.1 A Comparative Study of the Binary Logistic Regression (BLR) and Artificial Neural Network (ANN) Models for GIS-Based Spatial Predicting Landslides at a Regional Scale. In: Sassa, K., et al. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools . Springer, Cham. https://doi.org/10.1007/978-3-319-57774-6_10

Download citation

Publish with us

Policies and ethics