Skip to main content

Advertisement

Log in

Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Landslide susceptibility study is a critically important topic throughout the globe owing to the social and financial catastrophes of landslides. The present research aims to evaluate as well as compare the proficiencies of six advanced machine learning techniques (MLTs) for mapping the landslide susceptibility of northern parts of Pakistan. The considered MLTs include Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis, Artificial Neural Network (ANN), Naive Bayes, Multivariate Adaptive Regression Spline (MARS), along with Random Forest. The present research was performed applying GIS and R programming language (an open-source software). Primarily, the landslide inventory map was formulated with the help of an overall 3251 historical landslide events obtained through a variety of data sources. All the historical landslide locations were arbitrarily split into two groups with a proportion of 70% for training plus 30% for validating purposes. In total, sixteen landslide influencing factors were considered for modeling landslide susceptibility. These factors comprise aspect, elevation, slope, lithology, fault density, land cover classification system, topographic wetness index, earthquake, sediment transport index, normalized difference vegetation index, rainfall, soil, stream power index, road density, profile curvature, and plan curvature. The receiver operating characteristic, the area under curve (AUC), and root mean square error approaches were employed to appraise, validate, and relate the performance of the practiced MLTs. The outcomes demonstrated that AUC for six MLTs vary from 88.5% for LDA to 92.3% for ANN. The results reveal that among the six practiced MLTs, ANN (AUC = 92.3%) and MARS (AUC = 91.7%) have shown outstanding performances. Policymakers can use the findings of the present research and the produced landslide susceptibility maps for devising mitigation measures to curb the damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used for this study can be obtained from the corresponding author on a reasonable request.

Notes

  1. A flume test was conducted to evaluate the failure mechanism of a rainfall-induced landslide and to develop a physically based warning system. The test was performed at full scale to prevent scale effects, and the flume was a rectangular channel that was 20 m long, 4 m wide, and 2.5 m deep. The volumetric water content and the matric suction were measured at various depths to determine the rainfall infiltration into partially saturated soil. The displacement and tilt were measured at the slope surface, and a video camera was installed to record the slope failure. The results showed that the rainfall infiltration caused the volumetric water content to gradually increase and the matric suction to decrease. The resulting decrease in the soil strength caused soil deformation. Thus, the rainfall induced a landslide. The matric suction and the degree of saturation were used to calculate the generalized effective stress of the solid skeleton to develop a warning system. The stress paths were calculated using the effective mean stress and the deviatoric shear stress. The inflection point of the stress paths can be used to define a threshold for a rainfall-induced landslide warning system.

  2. Owing to the complexity of the relationship between external factors and landslide displacement, it is difficult to efficiently train the best landslide displacement prediction model only by manually inputting hyper-parameters, using existing machine learning methods. To overcome this setback, we proposed a nonlinear function to improve the inertia factor of particle swarm optimization (PSO). Subsequently, the hyper-parameters of the machine learning algorithm were dynamically updated by the improved particle swarm optimization. Thereafter, a landslide displacement prediction model of the improved particle swarm recurrent neural network (IPSO-RNN) based on the recurrent neural networks was proposed by fusing the rainfall and the groundwater. Finally, the proposed model was evaluated and validated using a quantity of rainfall, groundwater level, and displacement monitoring data, spanning almost 2 years, in the Heihusicun landslide, located in the Sichuan Province, China, as a case study. Based on the results obtained, compared with the traditional back propagation (BP) prediction model of landslide displacement, the proposed model can achieve a satisfactory fitting effect and maintain higher prediction accuracy.

References

  • Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101–111. https://doi.org/10.1016/j.geomorph.2018.06.006

    Article  Google Scholar 

  • Aguirre-Gutiérrez, J., Carvalheiro, L. G., Chiara Polce, E., van Loon, E., Raes, N., Reemer, M., & Biesmeijer, J. C. (2013). Fit-for-purpose: Species distribution model performance depends on evaluation criteria–dutch hoverflies as a case study. PLoS ONE, 8(5), e63708. https://doi.org/10.1371/journal.pone.0063708

    Article  CAS  Google Scholar 

  • Akinci, H. and M. Zeybek (2021). Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Natural Hazards 1–29.

  • Ali, S., Biermanns, P., Haider, R., & Reicherter, K. (2019). Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan. Natural Hazards and Earth System Sciences, 19(5), 999–1022.

    Article  Google Scholar 

  • Arabameri, A., Pradhan, B., Rezaei, K., Sohrabi, M., & Kalantari, Z. (2019). GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. Journal of Mountain Science, 16(3), 595–618. https://doi.org/10.1007/s11629-018-5168-y

    Article  Google Scholar 

  • Arabameri, A., Rezaei, K., Cerdà, A., Conoscenti, C., & Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of The Total Environment, 660, 443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021

    Article  CAS  Google Scholar 

  • Turban, E., Aronson, J. E., & Liang, T.-P. (2005). Decision support systems and intelligent systems. NJ, USA: Pearson Prentice-Hall Upper Saddle River.

    Google Scholar 

  • Aslam, B., Zafar, A., & Khalil, U. (2021). Correction to: Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential. Soft Computing, 25(21), 13795–13795. https://doi.org/10.1007/s00500-021-06249-4

    Article  Google Scholar 

  • Baecher, G. B., & Christian, J. T. (2005). Reliability and statistics in geotechnical engineering. John Wiley & Sons.

  • Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 26(12), 1251–1263.

    Article  Google Scholar 

  • Basharat, M., Shah, H. R., & Hameed, N. (2016). Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas, Pakistan. Arabian Journal of Geosciences, 9(4), 1–19.

    Article  Google Scholar 

  • Bibi, T., Gul, Y., Abdul Rahman, A., & Riaz, M. (2016). Landslide susceptibility assessment through fuzzy logic inference system (FLIS). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 355.

    Article  Google Scholar 

  • Bilham, R., & Wallace, K. (2005). Future Mw> 8 earthquakes in the Himalaya: Implications from the 26 Dec 2004 Mw= 9.0 earthquake on India’s eastern plate margin. Special Publication of Geological Survey of India, 85, 1–14.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Tien Bui, D., Ho, T. C., Pradhan, B., Pham, B. T., Nhu, V. H., & Revhaug, I. (2016). GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 75(14), 1–22.

    Article  Google Scholar 

  • Calle, M. L., & Urrea, V. (2011). Letter to the editor: Stability of random forest importance measures. Briefings in Bioinformatics, 12(1), 86–89.

    Article  Google Scholar 

  • Carabella, C., Cinosi, J., Piattelli, V., Burrato, P., & Miccadei, E. (2022). Earthquake-induced landslides susceptibility evaluation: A case study from the Abruzzo region (Central Italy). CATENA, 208, 105729.

    Article  Google Scholar 

  • Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815–2831.

    Article  Google Scholar 

  • Chacón, J., Irigaray, C., Fernández, T., & El Hamdouni, R. (2006). Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65(4), 341–411.

    Article  Google Scholar 

  • Chen, W., Chai, H., Sun, X., Wang, Q., Ding, X., & Hong, H. (2016). A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arabian Journal of Geosciences, 9(3), 204.

    Article  Google Scholar 

  • Chen, W., Wang, J., Xie, X., Hong, H., Van Trung, N., Bui, D. T., Wang, G., & Li, X. (2016). Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environmental Earth Sciences, 75(20), 1344.

    Article  Google Scholar 

  • Chen, W., Pourghasemi, H. R., Kornejady, A., & Zhang, N. (2017). Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305, 314–327.

    Article  Google Scholar 

  • Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Bui, D. T., Duan, Z., Li, S., & A-Xing Zhu,. (2018). GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. CATENA, 164, 135–149.

    Article  Google Scholar 

  • Chen, W., Zhang, S., Li, R., & Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of The Total Environment, 644, 1006–1018.

    Article  CAS  Google Scholar 

  • Chen, Y.-R., Chen, J.-W., Hsieh, S.-C., & Ni, P.-N. (2009). The application of remote sensing technology to the interpretation of land use for rainfall-induced landslides based on genetic algorithms and artificial neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(2), 87–95.

    Article  Google Scholar 

  • Chung, C.-J.F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.

    Article  Google Scholar 

  • Colkesen, I., Sahin, E. K., & Kavzoglu, T. (2016). Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences, 118, 53–64.

    Article  Google Scholar 

  • Conoscenti, C., Ciaccio, M., Caraballo-Arias, N. A., Gómez-Gutiérrez, Á., Rotigliano, E., & Agnesi, V. (2015). Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology, 242, 49–64.

    Article  Google Scholar 

  • Craven, P., & Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische Mathematik, 31(4), 377–403.

    Article  Google Scholar 

  • Dahal, R. K., & Hasegawa, S. (2008). Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100(3–4), 429–443.

    Article  Google Scholar 

  • Garcia, G., de Oliveira, L., Ruiz, F. C., Guasselli, L. A., & Haetinger, C. (2019). Random forest and artificial neural networks in landslide susceptibility modeling: A case study of the Fão River Basin, Southern Brazil. Natural Hazards, 99(2), 1049–1073.

    Article  Google Scholar 

  • Eker, A. M., Dikmen, M., Cambazoğlu, S., Düzgün, ŞH. .B. ., & Akgün, H. (2015). Evaluation and comparison of landslide susceptibility mapping methods: A case study for the Ulus district, Bartın, northern Turkey. International Journal of Geographical Information Science, 29(1), 132–158.

    Article  Google Scholar 

  • Elkadiri, R., Sultan, M., Youssef, A. M., Elbayoumi, T., Chase, R., Bulkhi, A. B., & Al-Katheeri, M. M. (2014). A remote sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12), 4818–4835.

    Article  Google Scholar 

  • Fang, Z., Wang, Y., Peng, L., & Hong, H. (2020). Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139, 104470.

    Article  Google Scholar 

  • Felicísimo, Á. M., Cuartero, A., Remondo, J., & Quirós, E. (2013). Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides, 10(2), 175–189.

    Article  Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188.

    Article  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 19(1), 1–67.

    Google Scholar 

  • Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196.

    Article  Google Scholar 

  • Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers & Geosciences, 81, 1–11.

    Article  Google Scholar 

  • Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer.

  • Hong, H., Pourghasemi, H. R., & Pourtaghi, Z. S. (2016). Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259, 105–118.

    Article  Google Scholar 

  • Hong, H., Ilia, I., Tsangaratos, P., Chen, W., & Chong, X. (2017a). A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology, 290, 1–16.

    Article  Google Scholar 

  • Hong, H., Naghibi, S. A., Dashtpagerdi, M. M., Pourghasemi, H. R., & Chen, W. (2017b). A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian Journal of Geosciences, 10(7), 167.

    Article  Google Scholar 

  • Hong, H., Shahabi, H., Shirzadi, A., Chen, W., Chapi, K., Ahmad, B. B., Roodposhti, M. S., Hesar, A. Y., Tian, Y., & Bui, D. T. (2019). Landslide susceptibility assessment at the Wuning area, China: A comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 96(1), 173–212.

    Article  Google Scholar 

  • Hussain, A., & Yeats, R. S. (2009). Geological setting of the 8 October 2005 Kashmir earthquake. Journal of Seismology, 13(3), 315–325.

    Article  Google Scholar 

  • Jakob, M. (2022). Landslides in a changing climate. Landslide Hazards, Risks, and Disasters (pp. 505–579). Elsevier.

  • Sheelu Jones, A. K., Kasthurba, A. B., & Binoy, B. V. (2021). Impact of anthropogenic activities on landslide occurrences in southwest India: An investigation using spatial models. Journal of Earth System Science, 130(2), 1–18.

    Google Scholar 

  • Kadavi, P. R., Lee, C.-W., & Lee, S. (2019). Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models. Environmental Earth Sciences, 78(4), 116.

    Article  Google Scholar 

  • Kamp, U., Growley, B. J., Khattak, G. A., & Owen, L. A. (2008). GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101(4), 631–642.

    Article  Google Scholar 

  • Kaneda, H., Nakata, T., Tsutsumi, H., Kondo, H., Sugito, N., Awata, Y., Akhtar, S. S., Majid, A., Khattak, W., Awan, A. A., Yeats, R. S., Hussain, A., Ashraf, M., Wesnousky, S. G., & Kausar, A. B. (2008). Surface rupture of the 2005 Kashmir, Pakistan, earthquake and its active tectonic implications. Bulletin of the Seismological Society of America, 98(2), 521–557.

    Article  Google Scholar 

  • Kavzoglu, T., Colkesen, I., & Sahin, E. K. (2019). Machine learning techniques in landslide susceptibility mapping: a survey and a case study. Landslides: Theory, practice and modelling, 283–301.

  • Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Graphic publishers.

  • Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., & Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11–24.

    Article  Google Scholar 

  • Kim, T., Chung, B. D., & Lee, J.-S. (2017). Incorporating receiver operating characteristics into naive Bayes for unbalanced data classification. Computing, 99(3), 203–218.

    Article  Google Scholar 

  • Vinod Kumar, K., Martha, T. R., & Roy, P. S. (2006). Mapping damage in the Jammu and Kashmir caused by 8 October 2005 Mw 7.3 earthquake from the Cartosat–1 and Resourcesat–1 imagery. International Journal of Remote Sensing, 27(20), 4449–4459.

    Article  Google Scholar 

  • Lee, K., Suk, J., Kim, H., & Jeong, S. (2021). Modeling of rainfall-induced landslides using a full-scale flume test. Landslides, 18(3), 1153–1162.

    Article  Google Scholar 

  • Lee, S., Ryu, J.-H., Won, J.-S., & Park, H.-J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3–4), 289–302.

    Article  Google Scholar 

  • Lee, S., Hong, S.-M., & Jung, H.-S. (2017). A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability, 9(1), 48.

    Article  Google Scholar 

  • Lin, L., Lin, Q., & Wang, Y. (2017). Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Sciences, 17(8), 1411–1424.

    Article  Google Scholar 

  • Lin, Y. P., Chu, H. J., & Wu, C. F. (2010). Spatial pattern analysis of landslide using landscape metrics and logistic regression: A case study in Central Taiwan. Hydrology and Earth System Sciences Discussions, 7(3), 3423–3451.

    Google Scholar 

  • Liu, Y., Xu, C., Huang, B., Ren, X., Liu, C., Hu, B., & Chen, Z. (2020). Landslide displacement prediction based on multi-source data fusion and sensitivity states. Engineering Geology, 271, 105608.

    Article  Google Scholar 

  • Maqsoom, A., Aslam, B., Khalil, U., Kazmi, Z. A., Azam, S., Mehmood, T., & Nawaz, A. (2021). Landslide susceptibility mapping along the China Pakistan Economic Corridor (CPEC) route using multi-criteria decision-making method. Modeling Earth Systems and Environment, 1–15.

  • Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225–234.

    Article  Google Scholar 

  • Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6(1), 17–26.

    Article  Google Scholar 

  • Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225.

    Article  Google Scholar 

  • Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.

    Article  Google Scholar 

  • Naghibi, S. A., & Dashtpagerdi, M. M. (2017). Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeology Journal, 25(1), 169–189.

    Article  CAS  Google Scholar 

  • Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3–4), 401–418.

    Article  Google Scholar 

  • Owen, L. A., Kamp, U., Khattak, G. A., Harp, E. L., Keefer, D. K., & Bauer, M. A. (2008). Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology, 94(1–2), 1–9.

    Article  Google Scholar 

  • Pavel, M., Nelson, J. D., & Jonathan Fannin, R. (2011). An analysis of landslide susceptibility zonation using a subjective geomorphic mapping and existing landslides. Computers and Geosciences, 37(4), 554–566.

    Article  Google Scholar 

  • Petley, D. (2008). The global occurrence of fatal landslides in 2007. Geophysical Research Abstracts.

  • Pham, B. T., Bui, D. T., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2017). Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 128(1–2), 255–273.

    Article  Google Scholar 

  • Pham, B. T., Bui, D. T., & Prakash, I. (2017). Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotechnical and Geological Engineering, 35(6), 2597–2611.

    Article  Google Scholar 

  • Pham, B. T., Prakash, I., Dou, J., Singh, S. K., Trinh, P. T., Tran, H. T., Le, T. M., Van Phong, T., Khoi, D. K., Shirzadi, A., & Bui, D. T. (2020). A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 35(12), 1267–1292.

    Article  Google Scholar 

  • Pham, V. D., Nguyen, Q.-H., Nguyen, H.-D., Pham, V.-M., Van Manh, V., & Bui, Q.-T. (2020). Convolutional neural network—optimized moth flame algorithm for shallow landslide susceptible analysis. IEEE Access, 8, 32727–32736.

    Article  Google Scholar 

  • Pourghasemi, H. R., Gayen, A., Panahi, M., Rezaie, F., & Blaschke, T. (2019). Multi-hazard probability assessment and mapping in Iran. Science of The Total Environment, 692, 556–571.

    Article  CAS  Google Scholar 

  • Pourghasemi, H. R., Gayen, A., Edalat, M., Zarafshar, M., & Tiefenbacher, J. P. (2020). Is multi-hazard mapping effective in assessing natural hazards and integrated watershed management? Geoscience Frontiers, 11(4), 1203–1217.

    Article  Google Scholar 

  • Pourghasemi, H. R., & Kerle, N. (2016). Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences, 75(3), 185.

    Article  Google Scholar 

  • Pourghasemi, H. R., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm, which precision? CATENA, 162, 177–192.

    Article  Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.

    Article  Google Scholar 

  • Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. (2017). Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Science of The Total Environment, 579, 913–927.

    Article  CAS  Google Scholar 

  • Rodrigues, S. G., Silva, M. M., & Alencar, M. H. (2021). A proposal for an approach to mapping susceptibility to landslides using natural language processing and machine learning. Landslides, 1–15.

  • Rossetto, T., & Peiris, N. (2009). Observations of damage due to the Kashmir earthquake of October 8, 2005 and study of current seismic provisions for buildings in Pakistan. Bulletin of Earthquake Engineering, 7(3), 681–699.

    Article  Google Scholar 

  • Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., & Peruccacci, S. (2010). Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology, 114(3), 129–142.

    Article  Google Scholar 

  • Saba, S. B., van der Meijde, M., & van der Werff, H. (2010). Spatiotemporal landslide detection for the 2005 Kashmir earthquake region. Geomorphology, 124(1–2), 17–25.

    Article  Google Scholar 

  • Shafique, M., van der Meijde, M., & Khan, A. (2016). A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective. Journal of Asian Earth Sciences, 118, 68–80.

    Article  Google Scholar 

  • Shahri, A. A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena, 183, 104225.

    Article  Google Scholar 

  • Shao, X.-y, Chong, X., Ma, S.-y, Xi-wei, X., Bruce, J., Shyu, H., & Zhou, Q. (2021). Calculation of landslide occurrence probability in Taiwan region under different ground motion conditions. Journal of Mountain Science, 18(4), 1003–1012.

    Article  Google Scholar 

  • Shekhunova, S., Stadnichenko, S., Siumar, N., & Aleksieienkova, M. (2021). Natural and man-induced landslides formation factors in the Transcarpathia (Ukraine). In EGU General Assembly Conference Abstracts.

  • Shirzadi, A., Soliamani, K., Habibnejhad, M., Kavian, A., Chapi, K., Shahabi, H., Chen, W., Khosravi, K., Pham, B. T., Pradhan, B., Ahmad, A., Ahmad, B. B., & Bui, D. T. (2018). Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors, 18(11), 3777.

    Article  Google Scholar 

  • Shirzadi, A., Solaimani, K., Roshan, M. H., Kavian, A., Chapi, K., Shahabi, H., Keesstra, S., Ahmad, B. B., & Bui, D. T. (2019). Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. CATENA, 178, 172–188.

    Article  Google Scholar 

  • Soria, D., Garibaldi, J. M., Biganzoli, E., & Ellis, I. O. (2008). A comparison of three different methods for classification of breast cancer data. In 2008 Seventh International Conference on Machine Learning and Applications, IEEE.

  • Steger, S., Brenning, A., Bell, R., Petschko, H., & Glade, T. (2016). Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology, 262, 8–23.

    Article  Google Scholar 

  • Steorts, R. C. (2014). Linear and quadratic discriminant analysis, Ppt.

  • Cheng, S., Wang, L., Wang, X., Huang, Z., & Zhang, X. (2015). Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine. Natural Hazards, 76(3), 1759–1779.

    Article  Google Scholar 

  • Pham, B. T., Bui, D. T., & Prakash, I. (2018). Landslide susceptibility modelling using different advanced decision trees methods. Civil Engineering and Environmental Systems, 35(1–4), 139–157.

    Article  Google Scholar 

  • Thai Pham, B., Pham, S., Shahabi, O., Singh, S., Asl, A., & Quoc, L. (2019). Landslide susceptibility assessment by novel hybrid machine learning algorithms. Sustainability, 11(16), 4386.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering.

  • Bui, D. T., Shirzadi, A., Shahabi, H., Geertsema, M., Omidvar, E., Clague, J., Pham, B. T., Dou, J., Asl, D. T., Ahmad, B. B., & Lee, S. (2019). New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed. Forests, 10(9), 743.

    Article  Google Scholar 

  • Torizin, J., Fuchs, M., Awan, A. A., Ahmad, I., Akhtar, S. S., Sadiq, S., Razzak, A., Weggenmann, D., Fawad, F., Khalid, N., Sabir, F., & Khan, A. J. (2017). Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan. Natural Hazards, 89(2), 757–784.

    Article  Google Scholar 

  • Tsangaratos, P., & Ilia, I. (2016). Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. CATENA, 145, 164–179.

    Article  Google Scholar 

  • van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167–184.

    Article  Google Scholar 

  • Wang, Q., Wang, Y., Niu, R., & Peng, L. (2017). Integration of information theory, K-means cluster analysis and the logistic regression model for landslide susceptibility mapping in the Three Gorges Area, China. Remote Sensing, 9(9), 938.

    Article  Google Scholar 

  • Wang, Q., & Li, W. (2017). A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Physical Geography, 38(4), 318–337.

    Article  Google Scholar 

  • Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of The Total Environment, 666, 975–993.

    Article  CAS  Google Scholar 

  • Wu, C., & Lin, C. (2021). Spatiotemporal hotspots and decadal evolution of extreme rainfall-induced landslides: Case studies in Southern Taiwan. Water, 13(15), 2090.

    Article  Google Scholar 

  • Xindong, W., Vipin Kumar, J., Quinlan, R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., & Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.

    Article  Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), 251–266.

    Article  Google Scholar 

  • Yi, Y., Zhang, Z., Zhang, W., Qi, X., Deng, C., & Li, Q. (2019). GIS-based earthquake-triggered-landslide susceptibility mapping with an integrated weighted index model in Jiuzhaigou region of Sichuan Province, China. Natural Hazards and Earth System Sciences, 19(9), 1973–1988.

    Article  Google Scholar 

  • Yilmaz, I. (2010). The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences, 60(3), 505–519.

    Article  Google Scholar 

  • Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., & Al-Katheeri, M. M. (2016). Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5), 839–856.

    Article  Google Scholar 

  • Youssef, A. M., & Pourghasemi, H. R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12(2), 639–655.

    Article  Google Scholar 

  • Zhang, C., Yin, Y., Yan, H., Li, H., Dai, Z., & Zhang, N. (2021). Reactivation characteristics and hydrological inducing factors of a massive ancient landslide in the three Gorges Reservoir, China. Engineering Geology, 292, 106273.

    Article  Google Scholar 

  • Zhang, K., Xueling, W., Niu, R., Yang, K., & Zhao, L. (2017). The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environmental Earth Sciences, 76(11), 1–20.

    Article  Google Scholar 

  • Zhang, Z., Yang, F., Chen, H., Yanli, W., Li, T., Li, W., Wang, Q., & Liu, P. (2016). GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models. Environmental Earth Sciences, 75(11), 1–12.

    Google Scholar 

  • Zhao, G., Pang, B., Zongxue, X., Yue, J., & Tongbi, T. (2018). Mapping flood susceptibility in mountainous areas on a national scale in China. Science of The Total Environment, 615, 1133–1142.

    Article  CAS  Google Scholar 

  • Zheng, T., Zhao, Qh., Jian Bo, H., Jiang, Jf., & Rui, S. (2021). An IPSO-RNN machine learning model for soil landslide displacement prediction. Arabian Journal of Geosciences, 14(12), 1191.

    Article  Google Scholar 

  • Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., & Pourghasemi, H. R. (2018). Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Computers & Geosciences, 112, 23–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Aslam.

Ethics declarations

Conflict of interest

The authors declare no competing interests pertinent to the context of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, B., Zafar, A. & Khalil, U. Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-022-02314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-022-02314-6

Keywords

Navigation