Skip to main content

Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes in Grapevine: The Potential for Sustainable Viticulture?

  • Chapter
  • First Online:
Mycorrhiza - Function, Diversity, State of the Art

Abstract

Viticulture is an important agronomic sector that has the potential to greatly benefit by improvements in our understanding of grapevine cultivation. Although conventional viticulture relies to a great extent on pesticide and fertilizer application, more sustainable approaches involve management practices that favor plant–fungus interactions that have positive effects on the nutritional quality of the grapes and reduce production costs (i.e., of pesticides and fertilizers) and thus reduce the negative effects on the environment. Fungal endophytes that colonize grapevines belong to different taxa, with the majority of reports focusing on fungi that form arbuscular mycorrhizal associations. These fungal endophytes have been demonstrated to confer beneficial growth and nutrition effects to their plant hosts via improved exploitation of the substrate and improved tolerance of the grapevine to abiotic and biotic stresses. Here, we review current knowledge on the importance and potential of these diverse fungal groups for grapevine production and expose the gaps in our understanding of possible functions of fungal groups that are currently little studied. In addition, we underline the effects of sustainable agricultural practices on fungal communities, to boost the progress in different viticultural techniques on the interactions between fungal endophytes and grapevines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the past, the name G. intraradices was in the majority of cases misapplied to a present species R. irregularis, and not to R. intraradices, which has a very limited distribution (Stockinger et al. 2009).

References

  • Alguacil MM, Torres MP, Torrecillas E et al (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173. doi:10.1016/j.soilbio.2010.09.029

    Article  CAS  Google Scholar 

  • Balestrini R, Magurno F, Walker C et al (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604. doi:10.1111/j.1758-2229.2010.00160.x

    Article  PubMed  Google Scholar 

  • Baumgartner K, Smith RF, Bettiga L (2005) Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard. Mycorrhiza 15:111–119. doi:10.1007/s00572-004-0309-2

    Article  CAS  PubMed  Google Scholar 

  • Belew D, Astatkie T, Mokashi MN et al (2010) Effects of salinity and mycorrhizal inoculation (Glomus fasciculatum) on growth responses of grape rootstocks (Vitis spp.) S Afr J Enol Vitic 31:82–88

    Google Scholar 

  • Biricolti S, Ferrini F, Rinaldeli E et al (1997) VAM fungi and soil lime content influence rootstock growth and nutrient content. Am J Enol Vitic 48:93–99

    Google Scholar 

  • Błaszkowski J, Wubet T, Harikumar VSS et al (2010) Glomus indicum, a new arbuscular mycorrhizal fungus. Botany 88:132–143. doi:10.1139/B09-104

    Article  Google Scholar 

  • Borstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298. doi:10.1007/s00374-005-0026-9

    Article  Google Scholar 

  • Bouffaud M, Bernaud E, Colombet A et al (2016) Regional-scale analysis of arbuscular mycorrhizal fungi: the case of Burgundy vineyards. J Int des Sci la Vigne du Vin 50:1–8

    Google Scholar 

  • Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130. doi:10.1139/b01-138

    Article  Google Scholar 

  • Cheng X, Baumgartner K (2004) Arbuscular mycorrhizal fungi-mediated nitrogen transfer from vineyard cover crops to grapevines. Biol Fertil Soils 40:406–412. doi:10.1007/s00374-004-0797-4

    Article  CAS  Google Scholar 

  • de Felice DV, Solfrizzo M, De Curtis F et al (2008) Strains of Aureobasidium pullulans can lower ochratoxin A contamination in wine grapes. Phytopathology 98:1261–1270. doi:10.1094/PHYTO-98-12-1261

    Article  PubMed  Google Scholar 

  • de Oliveira Freitas N, Yano-Melo AM, Barbosa da Silva FS, de Melo NF, Costa Maia L (2011) Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil. Sci Agric 68:223–229

    Article  Google Scholar 

  • De Stefano S, Nicoletti R, Milone A, Zambardino S (1999) 3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry 52:1399–1401. doi:10.1016/S0031-9422(99)00320-9

    Article  CAS  Google Scholar 

  • Dickie IA (2006) Mycorrhiza of forest ecosystems. In: Lal E (ed) Encyclopedia of soil science. Taylor and Francis, New York, pp 1111–1114

    Google Scholar 

  • Eftekhari M, Alizadeh M, Ebrahimi P (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind Crop Prod 38:160–165. doi:10.1016/j.indcrop.2012.01.022

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078. doi:10.1139/b96-131

    Article  Google Scholar 

  • Fitter AH, Graves JD, Watkins NK et al (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412

    Article  Google Scholar 

  • Gallou A, Mosquera HPL, Cranenbrouck S et al (2011) Mycorrhiza-induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant Pathol 76:20–26. doi:10.1016/j.pmpp.2011.06.005

    Article  CAS  Google Scholar 

  • Gams W, Holubova-Jechova V (1976) Chloridium and some other dematiaceous Hyphomycetes growing on decaying wood. Stud Mycol 13:1–99

    Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312. doi:10.1007/s00572-003-0274-1

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175. doi:10.1007/s00374-003-0636-z

    Article  Google Scholar 

  • Girlanda M, Perotto S, Luppi AM (2006) Molecular diversity and ecological roles of mycorrhiza-associated sterile fungal endophytes in mediterranean ecosystems. In: Schulz B, Boyle C, Sieber T (eds) Soil biology. Springer, Berlin, pp 207–226

    Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D et al (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672. doi:10.1093/jxb/ers046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haselwandter K, Read D (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62. doi:10.1007/BF00346707

    Article  CAS  PubMed  Google Scholar 

  • Hausmann NT, Hawkes CV (2010) Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology 91:2333–2343. doi:10.1890/09-0924.1

    Article  PubMed  Google Scholar 

  • Havlin JL, Kissel DE, Maddux LD et al (1990) Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc Am J 54:448–452. doi:10.2136/sssaj1990.03615995005400020026x

    Article  Google Scholar 

  • Hennebert G, Bellemere A (1979) Les formes conidiennes des Discomycetes. Essai tax- onomique. Rev Mycol 43:259–352

    Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. doi:10.1016/j.phytochem

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Zhuo F, Long S et al (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805. doi:10.1038/srep21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR et al (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. doi:10.1046/j.1469-8137.2003.00938.x

    Article  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal ? Mycorrhiza 11:207–211. doi:10.1007/s005720100112

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310. doi:10.1046/j.1469-8137.1998.00265.x

    Article  Google Scholar 

  • Karagiannidis N, Nikolaou N (1999) Arbuscular mycorrhizal root infection as an important factor of grapevine nutrition status. Multivariate analysis application for evaluation and characterization of the soil and leaf parameters. Agrochimica 43:151–165

    CAS  Google Scholar 

  • Klugh KR, Cumming JR (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Knapp DG, Pintye A, Kovacs GM (2012) The dark side is not fastidious? Dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS One 7:1–8. doi:10.1371/journal.pone.0032570

    Article  Google Scholar 

  • Li LF, Li T, Zhao ZW (2007) Differences of arbuscular mycorrhizal fungal diversity and community between a cultivated land, an old field, and a never-cultivated field in a hot and arid ecosystem of southwest China. Mycorrhiza 17:655–665

    Article  CAS  PubMed  Google Scholar 

  • Li L-F, Li T, Zhang Y, Zhao Z-W (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427. doi:10.1111/j.1574-6941.2009.00815.x

    Article  CAS  PubMed  Google Scholar 

  • Likar M, Regvar M (2013) Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil 370:593–604. doi:10.1007/s11104-013-1656-6

    Article  CAS  Google Scholar 

  • Likar M, Hančević K, Radić T, Regvar M (2013) Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23:209–219. doi:10.1007/s00572-012-0463-x

    Article  CAS  PubMed  Google Scholar 

  • Likar M, Vogel-Mikuš K, Potisek M et al (2015) Importance of soil and vineyard management in the determination of grapevine mineral composition. Sci Total Environ 505:724–731. doi:10.1016/j.scitotenv.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Feng Y, Zhang H et al (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771. doi:10.1021/es3001695

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG, Davis EA (2001) Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Am J Enol Vitic 52:8–11

    CAS  Google Scholar 

  • Liu W, Zhang Y, Jiang S et al (2016) Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6:24902. doi:10.1038/srep24902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179. doi:10.1111/j.1462-2920.2009.02099.x

    CAS  PubMed  Google Scholar 

  • Maherali H (2014) Is there an association between root architecture and mycorrhizal growth response? New Phytol 204:192–200. doi:10.1111/nph.12927

    Article  PubMed  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189. doi:10.3114/sim.53.1.173

    Article  Google Scholar 

  • Menge J, Raski D, Lider L (1983) Interactions between mycorrhizal fungi, soil fumigation, and growth of grapes in California. Am J Enol Vitic 34:117–121

    Google Scholar 

  • Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snowmelt by the snow buttercup, Ranunculus adoneus. Arct Alp Res 30:121–125. doi:10.2307/1552126

    Article  Google Scholar 

  • Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90. doi:10.1007/s11104-004-2066-6

    Article  CAS  Google Scholar 

  • Nappi P, Jodice R, Luzzati A, Corino L (1985) Grapevine root system and VA mycorrhizae in some soils of Piedmont (Italy). Plant Soil 85:205–210. doi:10.1007/BF02139624

    Article  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. doi:10.1111/j.1469-8137.2010.03611.x

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou N, Angelopoulos K, Karagiannidis N (2003) Effects of drought stress on mycorrhizal and non-mycorrhizal cabernet sauvignon grapevine, grafted onto various rootstocks. Exp Agric 39:241–252. doi:10.1017/S001447970300125X

    Article  Google Scholar 

  • Nogales A, Luque J, Estaún V et al (2009) Differential growth of mycorrhizal field-inoculated grapevine rootstocks in two replant soils. Am J Enol Vitic 60:484–489

    CAS  Google Scholar 

  • Nunez-Trujillo G, Cabrera R, Burgos-Reyes RL, Da Silva E, Gimenez C, Cosoveanu A, Brito N (2012) Endophytic fungi from Vitis vinifera L. isolated in Canary Islands and Azores as potential biocontrol agents of Botrytis cinerea Pers.:Fr. J Hortic Forestry Biotechnol 16:1–6

    Google Scholar 

  • Ocete R, Armendariz I, Cantos M et al (2015) Ecological characterization of wild grapevine habitats focused on arbuscular mycorrhizal symbiosis. Vitis 54:207–211

    Google Scholar 

  • Oehl F, Sieverding E, Mäder P et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583. doi:10.1007/s00442-003-1458-2

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K et al (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283. doi:10.1111/j.1469-8137.2004.01235.x

    Article  PubMed  Google Scholar 

  • Pancher M, Ceol M, Corneo PE et al (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) Respond to crop management. Appl Environ Microbiol 78:4308–4317. doi:10.1128/AEM.07655-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit E, Gubler WD (2006) Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Dis 90:1481–1484. doi:10.1094/PD-90-1481

    Article  Google Scholar 

  • Piccolo S, Alfonzo A, Burruano S, Moschetti G (2016) Detection of bacterial endophytes in Vitis vinifera L. and antibiotic activity against grapevine fungal pathogens. In: Compant S, Methieu F (eds) Biocontrol of major grapevine diseases: leading research. CABI, Boston, pp 182–190

    Chapter  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315. doi:10.1146/annurev-phyto-080508-081831

    Article  CAS  PubMed  Google Scholar 

  • Radić T, Hančević K, Likar M, Bogdanović I (2012) Neighbouring weeds influence the formation of arbuscular mycorrhiza in grapevine. Symbiosis 56:111–120. doi:10.1007/s13199-012-0165-3

    Article  Google Scholar 

  • Radić T, Likar M, Hančević K et al (2014) Occurrence of root endophytic fungi in organic versus conventional vineyards on the Croatian coast. Agric Ecosyst Environ 192:115–121. doi:10.1016/j.agee.2014.04.008

    Article  Google Scholar 

  • Regvar M, Bukovnik U, Likar M, Kreft I (2012) UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Cent Eur J Biol 7:275–283. doi:10.2478/s11535-012-0017-4

    CAS  Google Scholar 

  • Reynolds AG (ed) (2010) Front matter. In: Managing wine quality. Woodhead Publishing, Oxford, pp 1–3

    Google Scholar 

  • Rosendahl S, Stukenbrock EH (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Mol Ecol 13:3179–3186. doi:10.1111/j.1365-294X.2004.02295.x

    Article  CAS  PubMed  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.) Ann Bot 68:135–141

    Article  Google Scholar 

  • Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191. doi:10.1128/AEM.02187-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schol-Schwarz M (1970) Revision of the genus Phialophora (Moniliales). Persoonia 6:59–94

    Google Scholar 

  • Schreiner RP (2003) Mycorrhizal colonization of grapevine rootstocks under field conditions. J Enol Vitic 3:143–149

    Google Scholar 

  • Schreiner RP (2005) Mycorrhizas and mineral acquisition in grapevines. In: Christensen LP, Smart DR (eds) Proceedings of the soil environment and vine mineral nutrition symposium. pp 49–60

    Google Scholar 

  • Schreiner PR (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of “Pinot noir” (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215. doi:10.1016/j.apsoil.2007.03.002

    Article  Google Scholar 

  • Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611. doi:10.3852/08-169

    Article  PubMed  Google Scholar 

  • Schubert A, Cravero MC (1985) Occurrence and infectivity of vesicular-arbuscular mycorrhizal fungi in north-western Italy vineyards. Vitis 24:129–138

    Google Scholar 

  • Schubert A, Cammarata S, Eynard I (1988) Growth and root colonization of grapevines inoculated with different mycorrhizal endophytes. Hortic Sci 23:302–303

    Google Scholar 

  • Smart DR, Schwass E, Lakso A, Morano L (2006) Grapevine rooting patterns: a comprehensive Analysis and a review. Am J Enol Vitic 57:89–104

    Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Steenwerth K, Belina KM (2008) Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40:359–369. doi:10.1016/j.apsoil.2008.06.006

    Article  Google Scholar 

  • Stockinger H, Walker C, Schüssler A (2009) Glomus intraradices DAOM197198, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183: 1176–1187

    Google Scholar 

  • Ulrichs C, Fischer G, Büttner C, Mewis I (2008) Comparison of lycopene, b -carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi ( AMF ). Agron Colomb 26:40–46

    Google Scholar 

  • van Leeuwen C, Seguin G (2006) The concept of terroir in viticulture. J Wine Res 17:1–10. doi:10.1080/09571260600633135

    Article  Google Scholar 

  • van Rooyen M, Valentine AJ, Archer E (2004) Arbuscular mycorrhizal colonisation modifies the water relations of young transplanted grapevines (Vitis). S Afr J Enol Vitic 25:37–42

    Google Scholar 

  • Varma A, Verma S, Sudha et al (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Bakshi M, Lou B et al (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131. doi:10.1007/s40003-012-0019-5

    Article  Google Scholar 

  • Verbruggen E, Van Der Heijden MGA, Weedon JT et al (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353. doi:10.1111/j.1365-294X.2012.05534.x

    Article  PubMed  Google Scholar 

  • Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scoleco-spored Ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129

    Google Scholar 

  • Wang FW, Jiao RH, Cheng AB et al (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83. doi:10.1007/s11274-006-9195-4

    Article  Google Scholar 

  • Zhang T, Yang X, Guo R, Guo J (2016) Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Sci Rep 6:24749. doi:10.1038/srep24749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Likar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Likar, M., Regvar, M. (2017). Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes in Grapevine: The Potential for Sustainable Viticulture?. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. https://doi.org/10.1007/978-3-319-53064-2_13

Download citation

Publish with us

Policies and ethics