Skip to main content
Log in

Neighbouring weeds influence the formation of arbuscular mycorrhiza in grapevine

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Grapevine (Vitis vinifera L.) and two selected weeds from Mediterranean Croatian vineyards (Plantago lanceolata L. and Tanacetum cinerariifolium (Trevir.) Sch.Bip.) were examined in pot culture experiments, individually or when combined, to see whether multiple hosts influenced the formation of the symbiosis with arbuscular mycorrhizal fungi (AMF). The results after six-month period showed that plant identity and density significantly influenced development of mycorrhizal intra- and extraradical mycelium and/or sporulation. Grapevine and T. cinerariifolium individually and in combination resulted in a greater development of arbuscular mycorrhizae in terms of spore production, extraradical mycelium length and root colonization compared with pots containing P. lanceolata. Herbaceous weed species seemed to promote a different set of dominant AMF, potentially providing a wider spectrum of AMF for colonising grapevine roots. This indicates the value of encouraging host plant diversity in vineyards. AMF sequences obtained in this study are the first data reported for soils in Croatia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbot LK, Robson AD (1984) The effect of root density, inoculum placement and the infectivity of inoculum on the development of vesicular-arbuscular mycorrhizas. New Phytol 97:285–299

    Article  Google Scholar 

  • Alguacil MM, Torres MP, Torrecillas E, Diaz G, Roldan A (2011) Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol Biochem 43:167–173

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Bainard LD, Brown PD, Upadhyaya MK (2009) Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi. Weed Sci 57(4):386–393

    Article  CAS  Google Scholar 

  • Balaz M, Vosatka M (2001) A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. Mycorrhiza 11:291–296

    Article  CAS  Google Scholar 

  • Baumgartner K, Smith RF, Bettiga L (2005) Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard. Mycorrhiza 15:111–119

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Schultz PA (2005) Mechanisms of mycorrhizal mediation of plant-plant interactions. In: Dighton J, Oudemans P (eds) The fungal community, 4th edn. Taylor and Francis, Boca Raton, pp 443–460

    Google Scholar 

  • Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130

    Article  Google Scholar 

  • De Deyn GB, Biere A, van der Putten WH, Wagenaar R, Klironomos JN (2009) Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160:433–442

    Article  PubMed  Google Scholar 

  • Genney DR, Hartley SH, Alexander IJ (2001) Arbuscular mycorrhizal colonization increases with host density in a heathland community. New Phytol 152:355–363

    Article  Google Scholar 

  • Gerdeman JW, Nicolson TH (1963) Spore of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18(8):418–423

    Article  Google Scholar 

  • Hausmann NT, Hawkes CV (2010) Order of plant host establishment alters the composition of arbuscular mycorrhizal communities. Ecology 91(8):2333–2343

    Article  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431–431

    Article  CAS  PubMed  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  CAS  PubMed  Google Scholar 

  • Hetrick BAD, Bloom J (1986) The influence of host plant on production ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78:32–36

    Article  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Vandenkoornhuyse P, Leake JR, Gilbert L, Booth RE, Grime JP et al (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosm. New Phytol 161:503–515

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kjøller R, Rosendahl S (2001) Molecular diversity of Glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas. Mycol Res 105:1027–1032

    Article  Google Scholar 

  • Koide RT, Dickie IA (2002) Role of mycorrhizal fungi in plant populations. Plant Soil 244:307–317

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li LF, Li T, Zhang Y, Zhao ZW (2009) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427

    Article  PubMed  Google Scholar 

  • Mallik MAB, Williams RD (2005) Allelopathic growth stimulation of plants and microorganisms. Allelopathy J 16(2):175–198

    Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives and objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mohr HD (1996) Periodicity of root tip growth of vines in the Moselle valley. Vit Enol Sci 51:83–90

    Google Scholar 

  • Moora M, Zobel M (1998) Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages? Can J Bot 76:613–619

    Google Scholar 

  • Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90

    Article  CAS  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Perez M, Urcelay C (2009) Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza 19:517–523

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure of clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:159–161

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltesst: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Santos-Gonzalez JC, Finlay RD, Tehler A (2007) Seasonal dynamics or arbuscular mycorrhizal fungal communities in roots in a semnatural grassland. Appl Environ Microbiol 73:5613–5623

    Article  CAS  PubMed  Google Scholar 

  • Schreiner RP (2005) Spatial and temporal variation of roots, arbuscular mycorrhizal fungi, and plant and soil nutrients in a mature Pinot Noir (Vitis vinifera L.) vineyard in Oregon, USA. Plant Soil 276:219–234

    Article  CAS  Google Scholar 

  • Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101(5):599–611

    Article  PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schuessler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non monophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  Google Scholar 

  • Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sýkorová Z, Wiemken A, Redecker D (2007) Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 73:5426–5434

    Article  PubMed  Google Scholar 

  • Tahat MM, Kamaruzaman S, Radziah O, Kadir J, Masdek HN (2008) Plant host selectivity for multiplication of Glomus mosseae spore. Int J Bot 4:466–470

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (In press)

  • van der Heijden MGA, Sanders IR (2003) Mycorrhizal ecology. Springer, Berlin

    Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • van Ruijven J, Berendse F (2003) Positive effects of plant species diversity on productivity in absence of legumes. Ecol Lett 6:170–175

    Article  Google Scholar 

  • Vierheilig H, Lerat S, Piche Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonised by Glomus mosseae. Mycorrhiza 13:167–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was financed by Unity through Knowledge Fund (UKF), Croatia, grant no53, within “My first research” program, and Ministry of Science, Education and Sports of the Republic of Croatia (091-0910468-0279). The authors thank MSc J. Radić for help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Radić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radić, T., Hančević, K., Likar, M. et al. Neighbouring weeds influence the formation of arbuscular mycorrhiza in grapevine. Symbiosis 56, 111–120 (2012). https://doi.org/10.1007/s13199-012-0165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0165-3

Keywords

Navigation