Skip to main content

Size and Shape Control Synthesis of Iron Oxide–Based Nanoparticles: Current Status and Future Possibility

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

Nanosized ferrites and magnetic nanocrystals have attracted significant attention owing to their vast applications in various fields, such as magnetic resonance imaging (MRI) contrast agents, magnetic memory, efficient hyperthermia for cancer therapy, and catalysts. Magnetic nanoparticles (MNPs) have been prepared by ferrite nanoparticles, MFe2O4 (M = Mn, Co, Ni, Zn, Mg, Fe, for example). Because of their applications in medical diagnosis technology, sensor technology, information storage, cooling technology, and magnetic warming, MNPs have attracted considerable interest in the last few years. The magnetic properties of MNPs strongly depend on the size of the MNPs. Therefore, MNPs with a controlled size are crucial in controlling properties for different applications in the biomedical field. The efficacy of dopant ions in modifying the resultant MNPs’ size and shape could be directly related to variations in the rate of crystal growth and thermodynamic and kinetic considerations. In some situations, particle growth is due to the existence of some other physicochemical phenomenon like passivation of the nanoparticle surface, charging of the nanoparticles, and compartmentalization of nanoparticles in different zones. Various methods involved in the crystal growth of MNPs are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grossman H, Myers W, Vreeland V, Bruehl R, Alper M, Bertozzi C, Clarke J (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. Proc Natl Acad Sci 101:129–134

    Article  Google Scholar 

  2. Chung S, Hoffmann A, Bader S, Liu C, Kay B, Makowski L, Chen L (2004) Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl Phys Lett 85:2971–2973

    Article  Google Scholar 

  3. Duan F, Guojun J (2005) Introduction to condensed matter physics. World Scientific, Singapore

    Book  Google Scholar 

  4. Ehrenreich H, Spaepen F (2001) Solid state physics. Academic Press

    Google Scholar 

  5. Néel L (1949) Effects of thermal fluctuations on the magnetization of small particles. CR Acad Sci Paris 228:1953

    Google Scholar 

  6. Néel L (1949) Theory of magnetic viscosity of fine grained ferromagnetics with application to baked clays. Ann Geophys 5:41

    Google Scholar 

  7. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  Google Scholar 

  8. Morrish AH (2001) In: Morrish AH (ed) The physical principles of magnetism. Wiley-VCH, p 696. isbn:ISBN 0-7803-6029-X

    Google Scholar 

  9. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1

    Article  Google Scholar 

  10. Rümenapp C, Gleich B, Haase A (2012) Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res 29:1165–1179

    Article  Google Scholar 

  11. Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    Article  Google Scholar 

  12. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Boehm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  Google Scholar 

  13. Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280

    Article  Google Scholar 

  14. Smit J, Wijn H (1954) Physical properties of ferrites. Adv Elect Electron Phys 6:69–136

    Article  Google Scholar 

  15. Van Der Zaag P (1999) New views on the dissipation in soft magnetic ferrites. J Magn Magn Mater 196:315–319

    Article  Google Scholar 

  16. Polking MJ, Alivisatos AP, Ramesh R (2015) Synthesis, physics, and applications of ferroelectric nanomaterials. MRS Commun 5:27–44

    Google Scholar 

  17. Hausner HH (2015) Modern materials: advances in development and applications. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  18. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    Article  Google Scholar 

  19. Hill RJ, Craig JR, Gibbs G (1979) Systematics of the spinel structure type. Phys Chem Miner 4:317–339

    Article  Google Scholar 

  20. Leem G, Sarangi S, Zhang S, Rusakova I, Brazdeikis A, Litvinov D, Lee TR (2009) Surfactant-controlled size and shape evolution of magnetic nanoparticles. Cryst Growth Des 9:32–34

    Article  Google Scholar 

  21. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  22. Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:299–310

    Article  Google Scholar 

  23. Rohrer GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, Delhi

    Book  Google Scholar 

  24. Stadelmann P (1987) EMS-a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145

    Article  Google Scholar 

  25. Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121:1260–1264

    Article  Google Scholar 

  26. Kang E, Park J, Hwang Y, Kang M, Park J-G, Hyeon T (2004) Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J Phys Chem B 108:13932–13935

    Article  Google Scholar 

  27. Song Q, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168

    Article  Google Scholar 

  28. Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 7:2422–2427

    Article  Google Scholar 

  29. Dronskowski R (2001) The little maghemite story: a classic functional material. Adv Funct Mater 11:27–29

    Article  Google Scholar 

  30. Lévy M, Wilhelm C, Siaugue J-M, Horner O, Bacri J-C, Gazeau F (2008) Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. J Phys Condens Matter 20:204133

    Article  Google Scholar 

  31. Waychunas GA (1991) Crystal chemistry of oxides and oxyhydroxides. Rev Mineral Geochem 25:11–68

    Google Scholar 

  32. Chen T, Xu H, Ji J, Chen J, Chen Y (2003) Formation mechanism of ferromagnetic minerals in loess of China: TEM investigation. Chin Sci Bull 48:2260–2267

    Article  Google Scholar 

  33. Matijevic E, Good RJ (2012) Surface and colloid science. Springer, Berlin

    Google Scholar 

  34. Klahr BM, Martinson AB, Hamann TW (2010) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27:461–468

    Article  Google Scholar 

  35. Saremi-Yarahmadi S, Wijayantha KGU, Tahir AA, Vaidhyanathan B (2009) Nanostructured α-Fe2O3 electrodes for solar driven water splitting: effect of doping agents on preparation and performance. J Phys Chem C 113:4768–4778

    Article  Google Scholar 

  36. Wu C, Yin P, Zhu X, Ouyang C, Xie Y (2006) Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110:17806–17812

    Article  Google Scholar 

  37. Zeng S, Tang K, Li T, Liang Z, Wang D, Wang Y, Zhou W (2007) Hematite hollow spindles and microspheres: selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment. J Phys Chem C 111:10217–10225

    Article  Google Scholar 

  38. Zhang G, Gao Y, Zhang Y, Guo Y (2010) Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ Sci Technol 44:6384–6389

    Article  Google Scholar 

  39. Cheng C-J, Lin C-C, Chiang R-K, Lin C-R, Lyubutin IS, Alkaev EA, Lai H-Y (2008) Synthesis of monodisperse magnetic iron oxide nanoparticles from submicrometer hematite powders. Crystal Growth Design 8:877–883

    Article  Google Scholar 

  40. Morrish AH (1994) Canted antiferromagnetism: hematite. World Scientific, Singapore

    Google Scholar 

  41. Cameron AG (1973) Abundances of the elements in the solar system. Space Sci Rev 15:121–146

    Article  Google Scholar 

  42. Suess HE, Urey HC (1956) Abundances of the elements. Rev Mod Phys 28:53

    Article  Google Scholar 

  43. Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California Press, Berkeley, CA

    Google Scholar 

  44. Ngo A, Pileni M (2001) Assemblies of ferrite nanocrystals: partial orientation of the easy magnetic axes. J Phys Chem B 105:53–58

    Article  Google Scholar 

  45. Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149:174–180

    Article  Google Scholar 

  46. Singhal S, Singh J, Barthwal S, Chandra K (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co 1− xNixFe2O4). J Solid State Chem 178:3183–3189

    Article  Google Scholar 

  47. Sousa MH, Tourinho FA, Depeyrot J, Da Silva GJ, Lara MCF (2001) New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures. J Phys Chem B 105:1168–1175

    Article  Google Scholar 

  48. Rooksby H, Willis B (1953) Crystal structure and magnetic properties of cobalt ferrite at low temperatures.

    Google Scholar 

  49. Thanh NT, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    Article  Google Scholar 

  50. Fanun M (2016) Colloids in drug delivery. CRC Press, Boca Raton, FL

    Google Scholar 

  51. Liveri VT (2006) Nucleation, growth, and arrested growth in confined space. In: Controlled synthesis of nanoparticles in microheterogeneous systems. Springer, New York, pp 75–90

    Google Scholar 

  52. Marchal P, David R, Klein J, Villermaux J (1988) Crystallization and precipitation engineering—I. An efficient method for solving population balance in crystallization with agglomeration. Chem Eng Sci 43:59–67

    Article  Google Scholar 

  53. Mersmann A (1999) Crystallization and precipitation. Chem Eng Process Process Intensif 38:345–353

    Article  Google Scholar 

  54. Dirksen J, Ring T (1991) Fundamentals of crystallization: kinetic effects on particle size distributions and morphology. Chem Eng Sci 46:2389–2427

    Article  Google Scholar 

  55. Franke J, Mersmann A (1995) The influence of the operational conditions on the precipitation process. Chem Eng Sci 50:1737–1753

    Article  Google Scholar 

  56. Costa CBB, Maciel MRW, Maciel Filho R (2007) Considerations on the crystallization modeling: population balance solution. Comput Chem Eng 31:206–218

    Article  Google Scholar 

  57. Banfield JF, Zhang H (2001) Nanoparticles in the environment. Rev Mineral Geochem 44:1–58

    Article  Google Scholar 

  58. Pascal C, Pascal J, Favier F, Elidrissi Moubtassim M, Payen C (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11:141–147

    Article  Google Scholar 

  59. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2002) Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles. J Mater Res 17:2410–2416

    Article  Google Scholar 

  60. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  61. Hua CC, Zakaria S, Farahiyan R, Khong LT (2008) Size-controlled synthesis and characterization of Fe. Sains Malaysiana 37:389–394

    Google Scholar 

  62. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  Google Scholar 

  63. Sun L, Huang C, Gong T, Zhou S (2010) A biocompatible approach to surface modification: biodegradable polymer functionalized super-paramagnetic iron oxide nanoparticles. Mater Sci Eng C 30:583–589

    Article  Google Scholar 

  64. Marciano V, Minore A, Liveri VT (2000) A simple method to prepare solid nanoparticles of water-soluble salts using water-in-oil microemulsions. Colloid Polym Sci 278:250–252

    Article  Google Scholar 

  65. Chen D, Tang X, Wu J, Zhang W, Liu Q, Jiang Y (2011) Effect of grain size on the magnetic properties of superparamagnetic Ni 0.5 Zn 0.5 Fe2O4 nanoparticles by co-precipitation process. J Magn Magn Mater 323:1717–1721

    Article  Google Scholar 

  66. Wilson K, Harris L, Goff J, Riffle J, Dailey J (2002) A generalized method for magnetite nanoparticle steric stabilization utilizing block copolymers containing carboxylic acids. Eur Cell Mater 3:206–209

    Google Scholar 

  67. Levy L, Hochepied J, Pileni M (1996) Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters. J Phys Chem 100:18322–18326

    Article  Google Scholar 

  68. Wang W, Efrima S, Regev O (1999) Directing silver nanoparticles into colloid-surfactant lyotropic lamellar systems. J Phys Chem B 103:5613–5621

    Article  Google Scholar 

  69. Qi L, Gao Y, Ma J (1999) Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals. Colloids Surf A Physicochem Eng Asp 157:285–294

    Article  Google Scholar 

  70. Andersson M, Alfredsson V, Kjellin P, Palmqvist AE (2002) Macroscopic alignment of silver nanoparticles in reverse hexagonal liquid crystalline templates. Nano Lett 2:1403–1407

    Article  Google Scholar 

  71. Liveri VT (2006) Controlled synthesis of nanoparticles in microheterogeneous systems. Springer, Berlin

    Google Scholar 

  72. Wu S-H, Chen D-H (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169

    Article  Google Scholar 

  73. Rabatic BM, Pralle MU, Tew GN, Stupp SI (2003) Nanostructured semiconductors templated by cholesteryl-oligo (ethylene oxide) amphiphiles. Chem Mater 15:1249–1255

    Article  Google Scholar 

  74. Yang H, Guo R, Wang H (2001) Lubrication of the mixed system of Triton X-100/n-C 10 H 21 OH/H2O lamellar liquid crystal and ZnS nanoparticles. Colloids Surf A Physicochem Eng Asp 180:243–251

    Article  Google Scholar 

  75. Padhi A, Nanjundaswamy K, Masquelier C, Okada S, Goodenough J (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Article  Google Scholar 

  76. Lu AH, Salabas EEL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  77. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424

    Article  Google Scholar 

  78. Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R (2010) A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal Chim Acta 659:172–177

    Article  Google Scholar 

  79. Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229

    Article  Google Scholar 

  80. Cabrera L, Gutierrez S, Menendez N, Morales M, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441

    Article  Google Scholar 

  81. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  Google Scholar 

  82. Suwalka O, Sharma RK, Sebastian V, Lakshmi N, Venugopalan K (2007) A study of nanosized Ni substituted Co–Zn ferrite prepared by coprecipitation. J Magn Magn Mater 313:198–203

    Article  Google Scholar 

  83. Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2016) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  Google Scholar 

  84. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  85. Wei W, Quanguo H, Rong H, Jingke H, Hong C (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mater Eng 36:238–243

    Google Scholar 

  86. Azcona P, Zysler R, Lassalle V (2016) Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications. Colloids Surf A Physicochem Eng Asp 504:320–330

    Article  Google Scholar 

  87. Morales MDP, Veintemillas-Verdaguer S, Montero M, Serna C, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11:3058–3064

    Article  Google Scholar 

  88. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Colloid Interf Sci 28:65–108

    Article  Google Scholar 

  89. Boistelle R, Astier J (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14–30

    Article  Google Scholar 

  90. Jolivet J, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to oxide. Wiley, New York

    Google Scholar 

  91. Babes L, Denizot BT, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    Article  Google Scholar 

  92. Jiang W, Yang H-C, Yang S-Y, Horng H-E, Hung J, Chen Y, Hong C-Y (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–214

    Article  Google Scholar 

  93. Tartaj P, González-Carreño T, Serna CJ (2004) From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals. Adv Mater 16:529–533

    Article  Google Scholar 

  94. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  Google Scholar 

  95. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, Wickline SA, Kotyk JJ (2000) Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles. Magn Reson Med 44:433–439

    Article  Google Scholar 

  96. Khollam Y, Dhage S, Potdar H, Deshpande S, Bakare P, Kulkarni S, Date S (2002) Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater Lett 56:571–577

    Article  Google Scholar 

  97. Kasapoğlu N, Baykal A, Toprak MS, Köseoğlu Y, Bayrakdar H (2007) Synthesis and characterization of NiFe2O4 nano-octahedrons by EDTA-assisted hydrothermal method. Turk J Chem 31:659–666

    Google Scholar 

  98. Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J (2009) Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J Phys Chem C 113:4357–4361

    Article  Google Scholar 

  99. Kadier W, Sadeh B, Duamet B, Aman M (2014) Hydrothermal synthesis and properties of CoFe2O4 magnetic nanoparticles 31.

    Google Scholar 

  100. Haw CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN (2010) Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int 36:1417–1422

    Article  Google Scholar 

  101. Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6:1

    Article  Google Scholar 

  102. Tartaj P, Del Puerto MM, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182

    Article  Google Scholar 

  103. Sugimoto T (2000) Fine particles: synthesis, characterization, and mechanisms of growth. CRC Press, Boca Raton, FL

    Google Scholar 

  104. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370

    Article  Google Scholar 

  105. Viau G, Ravel F, Acher O, Fiévet-Vincent F, Fiévet F (1994) Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles. J Appl Phys 76:6570–6572

    Article  Google Scholar 

  106. Majidi S, Zeinali Sehrig F, Farkhani SM, Soleymani Goloujeh M, Akbarzadeh A (2016) Current methods for synthesis of magnetic nanoparticles. Artificial Cells Nanomed Biotechnol 44:722–734

    Article  Google Scholar 

  107. Viau G, Fievet-Vincent F, Fievet F (1996) Monodisperse iron-based particles: precipitation in liquid polyols. J Mater Chem 6:1047–1053

    Article  Google Scholar 

  108. Fievet F, Lagier J, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 32:198–205

    Article  Google Scholar 

  109. Tzitzios V, Petridis D, Zafiropoulou I, Hadjipanayis G, Niarchos D (2005) Synthesis and characterization of L1 0 FePt nanoparticles from Pt–Fe3O4 core-shell nanoparticles. J Magn Magn Mater 294:e95–e98

    Article  Google Scholar 

  110. Jezequel D, Guenot J, Jouini N, Fievet F (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10:77–83

    Article  Google Scholar 

  111. Liu J, Qiao SZ, Hu QH (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  Google Scholar 

  112. Reetz MT, Helbig W, Quaiser SA (1996) Electrochemical methods in the synthesis of nanostructured transition metal clusters. Active Metals Prep Charact Appl:279–297

    Google Scholar 

  113. Khan H, Petrikowski K (2000) Anisotropic structural and magnetic properties of arrays of Fe 26 Ni 74 nanowires electrodeposited in the pores of anodic alumina. J Magn Magn Mater 215:526–528

    Article  Google Scholar 

  114. Pankhurst Q, Thanh N, Jones S, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001

    Article  Google Scholar 

  115. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633

    Article  Google Scholar 

  116. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  Google Scholar 

  117. Rodríguez-López A, Cruz-Rivera J, Elías-Alfaro C, Betancourt I, Ruiz-Silva H, Antaño-López R (2015) Fine tuning of magnetite nanoparticle size distribution using dissymmetric potential pulses in the presence of biocompatible surfactants and the electrochemical characterization of the nanoparticles. Mater Sci Eng C 46:538–547

    Article  Google Scholar 

  118. Chatterjee K, Sarkar S, Rao KJ, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interf Sci 209:8–39

    Article  Google Scholar 

  119. Herea D, Chiriac H, Lupu N, Grigoras M, Stoian G, Stoica B, Petreus T (2015) Study on iron oxide nanoparticles coated with glucose-derived polymers for biomedical applications. Appl Surf Sci 352:117–125

    Article  Google Scholar 

  120. Khoee S, Shagholani H, Abedini N (2015) Synthesis of quasi-spherical and square shaped oligoamino-ester graft-from magnetite nanoparticles: effect of morphology and chemical structure on protein interactions. Polymer 56:207–217

    Article  Google Scholar 

  121. Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF (2014) The effect of surface charge of functionalized Fe 3 O 4 nanoparticles on protein adsorption and cell uptake. Biomaterials 35:6389–6399

    Article  Google Scholar 

  122. Šutka A, Lagzdina S, Käämbre T, Pärna R, Kisand V, Kleperis J, Maiorov M, Kikas A, Kuusik I, Jakovlevs D (2015) Study of the structural phase transformation of iron oxide nanoparticles from an Fe2+ ion source by precipitation under various synthesis parameters and temperatures. Mater Chem Phys 149–150:473–479

    Article  Google Scholar 

  123. Lassalle V, Avena M, Ferreira M (2009) A review of the methods of magnetic nanocomposites synthesis and their applications as drug delivery systems and immobilization supports for lipases. Current Trends Polymer Sci 13:37–67

    Google Scholar 

  124. Roth H-C, Schwaminger SP, Schindler M, Wagner FE, Berensmeier S (2015) Influencing factors in the c-precipitation process of superparamagnetic iron oxide nano particles: a model based study. J Magn Magn Mater 377:81–89

    Article  Google Scholar 

  125. Fang M, Ström V, Olsson RT, Belova L, Rao KV (2012) Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotechnology 23:145601

    Article  Google Scholar 

  126. Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567

    Article  Google Scholar 

  127. Adeli M, Yamini Y, Faraji M (2012) Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab J Chem. doi:10.1016/j.arabjc.2012.10.012

  128. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  Google Scholar 

  129. Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao C (2006) Chitosan-mediated synthesis of gold nanoparticles on patterned poly (dimethylsiloxane) surfaces. Biomacromolecules 7:1203–1209

    Article  Google Scholar 

  130. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  Google Scholar 

  131. Reiss BD, Mao C, Solis DJ, Ryan KS, Thomson T, Belcher AM (2004) Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett 4:1127–1132

    Article  Google Scholar 

  132. Galloway JM, Bird SM, Bramble JP, Critchley K, Staniland SS (2013) Biotemplating magnetic nanoparticles on patterned surfaces for potential use in data storage. In: MRS Proceedings. Cambridge University Press, Delhi, pp 231–237

    Google Scholar 

  133. Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    Article  Google Scholar 

  134. Galloway JM, Arakaki A, Masuda F, Tanaka T, Matsunaga T, Staniland SS (2011) Magnetic bacterial protein Mms6 controls morphology, crystallinity and magnetism of cobalt-doped magnetite nanoparticles in vitro. J Mater Chem 21:15244–15254

    Article  Google Scholar 

  135. Wang L, Prozorov T, Palo PE, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M (2011) Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules 13:98–105

    Article  Google Scholar 

  136. Bird SM, El-Zubir O, Rawlings AE, Leggett GJ, Staniland SS (2016) A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles. J Mater Chem C 4:3948–3955

    Article  Google Scholar 

  137. Kolosnjaj-Tabi J, Lartigue L, Javed Y, Luciani N, Pellegrino T, Wilhelm C, Alloyeau D, Gazeau F (2016) Biotransformations of magnetic nanoparticles in the body. Nano Today 11(3):280–284

    Article  Google Scholar 

  138. Lartigue L, Alloyeau D, Kolosnjaj-Tabi J, Javed Y, Guardia P, Riedinger A, Péchoux C, Pellegrino T, Wilhelm C, Gazeau F (2013) Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 7:3939–3952

    Article  Google Scholar 

  139. Javed Y, Lartigue L, Hugounenq P, Vuong QL, Gossuin Y, Bazzi R, Wilhelm C, Ricolleau C, Gazeau F, Alloyeau D (2014) Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. Small 10:3325–3337

    Article  Google Scholar 

  140. Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, Desboeufs K, Michel A, Pellegrino T, Lalatonne Y (2016) Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single endosome and tissue levels. ACS Nano 10(8):7627–7638

    Article  Google Scholar 

  141. Kolosnjaj-Tabi J, Javed Y, Lartigue L, Volatron J, Elgrabli D, Marangon I, Pugliese G, Caron B, Figuerola A, Luciani N (2015) The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9:7925–7939

    Article  Google Scholar 

  142. Jun YW, Choi JS, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 45:3414–3439

    Article  Google Scholar 

  143. Nunez NO, Tartaj P, Morales MP, Pozas R, Ocana M, Serna CJ (2003) Preparation, characterization, and magnetic properties of Fe-based alloy particles with elongated morphology. Chem Mater 15:3558–3563

    Article  Google Scholar 

  144. Park S-J, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122:8581–8582

    Article  Google Scholar 

  145. Dumestre F, Chaudret B, Amiens C, Renaud P, Fejes P (2004) Superlattices of iron nanocubes synthesized from Fe [N (SiMe3) 2] 2. Science 303:821–823

    Article  Google Scholar 

  146. Wang L, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin Y, Kim N, Wang JQ (2005) Monodispersed core-shell Fe3O4@ Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  Google Scholar 

  147. Caruntu D, Cushing BL, Caruntu G, O’connor CJ (2005) Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem Mater 17:3398–3402

    Article  Google Scholar 

  148. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723

    Article  Google Scholar 

  149. Zambaux M, Bonneaux F, Gref R, Dellacherie E, Vigneron C (1999) Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 60:179–188

    Article  Google Scholar 

  150. Stolnik S, Illum L, Davis S (1995) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 16:195–214

    Article  Google Scholar 

  151. Savva M, Duda E, Huang L (1999) A genetically modified recombinant tumor necrosis factor-α conjugated to the distal terminals of liposomal surface grafted polyethyleneglycol chains. Int J Pharm 184:45–51

    Article  Google Scholar 

  152. Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D (1997) Complement consumption by poly (ethylene glycol) in different conformations chemically coupled to poly (isobutyl 2-cyanoacrylate) nanoparticles. Life Sci 61:749–761

    Article  Google Scholar 

  153. Sah H (1999) Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation. J Control Release 58:143–151

    Article  Google Scholar 

  154. Velge-Roussel F, Breton P, Guillon X, Lescure F, Bru N, Bout D, Hoebeke J (1996) Immunochemical characterization of antibody-coated nanoparticles. Experientia 52:803–806

    Article  Google Scholar 

  155. Piao Y, Kim J, Na HB, Kim D, Baek JS, Ko MK, Lee JH, Shokouhimehr M, Hyeon T (2008) Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 7:242–247

    Article  Google Scholar 

  156. Liu C, Wu X, Klemmer T, Shukla N, Weller D, Roy AG, Tanase M, Laughlin D (2005) Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide. Chem Mater 17:620–625

    Article  Google Scholar 

  157. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20:2472–2477

    Article  Google Scholar 

  158. Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60

    Article  Google Scholar 

  159. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun:927–934

    Google Scholar 

  160. Casula MF, Jun Y-W, Zaziski DJ, Chan EM, Corrias A, Alivisatos AP (2006) The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. J Am Chem Soc 128:1675–1682

    Article  Google Scholar 

  161. Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang N-M, Park J-G, Hyeon T (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584

    Article  Google Scholar 

  162. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  Google Scholar 

  163. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  Google Scholar 

  164. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Rädler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4:703–707

    Article  Google Scholar 

  165. White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128:11356–11357

    Article  Google Scholar 

  166. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22

    Article  Google Scholar 

  167. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  168. Yi DK, Selvan ST, Lee SS, Papaefthymiou GC, Kundaliya D, Ying JY (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991

    Article  Google Scholar 

  169. Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18:614–619

    Article  Google Scholar 

  170. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688–689

    Article  Google Scholar 

  171. Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB (2006) Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials. Small 2:209–215

    Article  Google Scholar 

  172. Yoon T-J, Kim JS, Kim BG, Yu KN, Cho M-H, Lee J-K (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed 44:1068–1071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuram Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ali, K., Javed, Y., Jamil, Y. (2017). Size and Shape Control Synthesis of Iron Oxide–Based Nanoparticles: Current Status and Future Possibility. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_2

Download citation

Publish with us

Policies and ethics