Skip to main content
Log in

Formation mechanism of ferromagnetic minerals in loess of China: TEM investigation

  • Reports
  • Published:
Chinese Science Bulletin

Abstract

The results of TEM investigation indicate that magnetite and maghemite are the major ferromagnetic minerals in loess-paleosol sequences. Primary magnetite has the similar morphology and surface characteristics as eolian detrital particles. The magnetite can be classified into two categories, high-titanium and low-titanium, which may be the indicators of magmatic rocks and metamorphic rocks, respectively. TEM investigation at nanometer scale shows that primary detrital magnetite of micron scale had been partially weathered to maghemite of 5–20 nanometer during the pedogenic process, which maintain the pseudomorphism of the aeolian debris. Some chlorite particles were also weathered to nanometer scale magnetite or maghemite in the pedogenic process. So weathering of the two minerals leads to formation of superparamagnetism, which may be the important mechanism of magnetic-susceptibility increase in paleosols. The magnetite or maghemite resulting from the weathering of chlorite contains a small amount of P and S, which is the signal of microbe-mineral interaction, and indicates that microbes may play a certain role in chlorite weathering and formation of superparamagnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heller, F., Liu, T. S., Magnetostratigraphical dating of loess deposits in China, Nature, 1982, 300: 431–433.

    Article  Google Scholar 

  2. An, Z. S., Wang, J. D., Li, H. M., Study on paleogeomagnetism of Luochuan loess section, Geochimica, 1977 (4): 239–249.

  3. Fine, P., Singer, M. J., Verosub, K. L., Use of magnetic-susceptibility measurements in assessing soil uniformity in chronosequence studies, Soil Science Society of America Journal, 1992, 56: 1195–1199.

    Google Scholar 

  4. Evans, M. E., Heller, F., Magnetic enhancement and paleoclimate: Study of a loess-paleosol couplet across the loess plateau of China, Geophysical Journal International, 1994, 117(1): 257–264.

    Article  Google Scholar 

  5. Evans, M. E., Heller, F., Magnetism of loess-palaeosol sequences: recent developments, Earth-Science Reviews, 2001, 54: 129–144.

    Article  Google Scholar 

  6. Banerjee, S. K., Hunt, C. P., Liu, X. M., Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau: A rock-magnetic approach, Geophysical Research Letters, 1993, 20: 843–846.

    Article  Google Scholar 

  7. Lu, H. Y., Han, J. M., Wu, N. Q. et al., Susceptibility analysis and paleoclimate significance of Chinese modern soils, Science in China, Series D (in Chinese), 1994, 24(12): 1290–1297.

    Google Scholar 

  8. Liu, X. M., Rolph, T., Bloemendal, J. et al., Quantitative estimates of palaeoprecipitation at Xifeng area, in the Loess Plateau of China, Palaeogeography, Palaeoclimatology, Ppalaeoecology, 1995, 113: 243–248.

    Article  Google Scholar 

  9. Maher, B. A., Thompson, R., Zhou, L. P., Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: a new mineral magnetic approach, Earth and Planetary Science Letters, 1994, 125: 461–471.

    Article  Google Scholar 

  10. Maher, B. A., Thompson, R., Paleorainfall Reconstructions from Pedogenic Magnetic Susceptibility Variations in the Chinese Loess and Paleosols, Quaternary Research, 1995, 44(3): 383–391.

    Article  Google Scholar 

  11. Heller, F., Liu, X. M., Liu, T. S. et al., Magnetic susceptibility of loess in China, Earth and Planetary Science Letters, 1991, 103: 301–310.

    Article  Google Scholar 

  12. Heller, F., Shen, C. D., Beer, J. et al., Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeomagnetic implications, Earth and Planetary Science Letters, 1991, 114: 385–390.

    Article  Google Scholar 

  13. Liu, X. M., Shaw, J., Liu, T. S. et al., Magnetic mineralogy of Chinese loess and its significance, Geophysical Journal International, 1992, 108: 301–308.

    Article  Google Scholar 

  14. Zhou, L. P., Oldfield, F., Wintle, A. G. et al., Partly pedogenic origin of magnetic variations in Chinese loess, Nature, 1990, 346: 737–739.

    Article  Google Scholar 

  15. Maher, B. A., Thompson, R., Mineral magnetic record of the Chinese loess and paleosols, Geology, 1991, 19(1): 3–6.

    Article  Google Scholar 

  16. Zheng, H., Oldfield, F., Yu, L. et al., The magnetic properties of particle-sized samples from the Luo Chuan loess section: evidence for pedogenesis, Physics of the Earth and Planetary Interior, 1991, 68: 250–258.

    Article  Google Scholar 

  17. Fine, P., Singer, M. J., Verosub, K. L. et al., New evidence for the origin of ferrimagnetic minerals in loess from China, Soil Science Society of America Journal, 1993, 57: 1537–1542.

    Article  Google Scholar 

  18. Verosub, K. L., Fine, P., Singer, M. J. et al., Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences, Geology, 1993, 21: 1011–1014.

    Article  Google Scholar 

  19. Eyre, J. K., Shaw, Magnetic enhancement of Chinese loess-the role of r-Fe2O3? Geophysical Journal of International, 1994, 117: 265–271.

    Article  Google Scholar 

  20. Sun, W., Banerjee, S. K., Hunt, C. P., The role of maghemite in the enchancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study conbined with citrate-bicarbnon-dithionite treatment, Earth and Planetary Science Letters, 1995, 133: 493–505.

    Article  Google Scholar 

  21. Liu, X. M., Hesse, P., Rolph, T., Origin of maghaemite in Chinese loess deposits: aeolian or pedogenic? Physics of the Earth and Planetary Interiors, 1999, 112(3–4): 191–201.

    Article  Google Scholar 

  22. Heller, F., Liu, T. S., Magnetism of Chinese loess deposits. Geophysical Journal Royal Astronomical Society, 1984, 77: 125–141.

    Google Scholar 

  23. Hunt, C. P., Singer, M. J., Kletetschka, G. et al., Effect of citrate-bicarbonate-dithionite treatment on fine-grained magnetite and maghemite, Earth and Planetary Science Letters, 1995, 130: 87–94.

    Article  Google Scholar 

  24. Deng, C., Zhu, R., Jackson, M. J. et al., Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11–12): 873–878.

    Article  Google Scholar 

  25. Kukla, G., An, Z. S., Loess stratigraphy in central China, Palaeogeography, Palaeoclimatology, and Palaeoecology, 1989, 72: 203–225.

    Article  Google Scholar 

  26. Rolph, T. C., Shaw, J., Derbyshire, E. et al., The magnetic mineralogy of a loess section near Lanzhou, China (ed. Pye, K.). The dynamics and environmental context of aeolian sedimentary systems, Geological Society Special Publication, 1993, 72: 311–323.

  27. Kleteschka, G., Banerjee, S. K., Magnetic stratigraphy of Chinese loess as a record of natural fire, Geophysical Research Letters, 1995, 22: 1341–1343.

    Article  Google Scholar 

  28. Meng, X. M., Derbyshire, E., Kemp, B. A., Origin of magnetic susceptibility signal in Chinese loess, Quaternary Science Review, 1997, 16: 833–839.

    Article  Google Scholar 

  29. Jia, R. F., Yan, B. Z., Li, R. S., Features of Magnetotactic bacteria in Duanjiapo loess section Shanxi and environmental significance, Science in China, Series D (in Chinese), 1996, 26(5): 411–416.

    Google Scholar 

  30. Petersen, N., Dobeneck, T. V., Vali, H., Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean, Nature, 1986, 320(17): 611–614.

    Article  Google Scholar 

  31. Maher, B. A., Talor, R. M., Formation of ultrafine-graine magnetite in soils, Nature, 1988, 336: 368–370.

    Article  Google Scholar 

  32. Fassbinder, W. E., Stanjek, H., Vail, H., Occurrence of magnetic bacteria in soil, Nature, 1990, 343: 161–163.

    Article  Google Scholar 

  33. Oldfield, F. The source of fine-grained magnetite in sediments, Holocene, 1992, 2: 180–182.

    Google Scholar 

  34. Snowball, I. F., Bacterial magnetite and the magnetic properties of sediments in a Swedish lake., Earth and Planetary Science Letters, 1994, 126: 129–142.

    Article  Google Scholar 

  35. Banfield, J. F., Welch, S. A., Zhang, H. Z. et al., Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science, 2000, 289: 751–753.

    Article  Google Scholar 

  36. Josifovska, M. G., Mcclean, R. G., Schofield, M. A. et al., Discovery of nanocrystalline botanical magnetite, European Journal of Mineralogy, 2001, 13: 863–870.

    Article  Google Scholar 

  37. Maher, B. A., Thompson, R., Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols, Quaternary Research, 1992, 37: 155–170.

    Article  Google Scholar 

  38. Liu, D. S., Loess and the Environment (in Chinese), Beijing: Science Press, 1985, 1–358.

    Google Scholar 

  39. Hounslow, M. W., Maher, B. A., Laboratory procedures for quantitative extraction and analysis of magnetic minerals from sediments (eds. Waiden, J., Oldfield, F., Smith, J. P.), Environmental magnetism: a practical guide, Quaternary Research Association, Cambridge, UK, Extraction and Analysis of Magnetic Minerals from Sediments, 1999, 139–184.

    Google Scholar 

  40. Barrn, V., Torrent, J., Evidence for a simple pathway to maghemite in Earth and Mars soil, Geochimica et Comochimica Acta, 2002, 66(15): 2801–2806.

    Article  Google Scholar 

  41. Maher, B. A., Magnetic properties of some synthetic sub-micron magnetites, Geophysical Journal of International, 1988, 94: 83–96.

    Article  Google Scholar 

  42. Proust, D., Eymery, J., Beaufort, D., Supergene vermiculitization of a magnesium chlorite: iron and magnesium removal processes, Clays and Clay Minerals, 1986, 34(5): 572–580.

    Article  Google Scholar 

  43. Righi, D., Petit, S., Bouchet, A., Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a Cryorthod, Clays and Clay minerals, 1993, 41(4): 484.

    Article  Google Scholar 

  44. Carnicelli, S., Mirabella, A., Cecchini, G. et al., Weathering of chlorite to a low-charge expandable mineral in a Spodosol on the Apennine mountains, Italy, Clays and Clay Minerals, 1997, 45(1): 28–41.

    Article  Google Scholar 

  45. Ji, J. F., Chen, J., Liu, L. W. et al., Chemical weathering of Chlorite and increase of susceptibility in Luochuan loess, Progress in Natural Science, 1999, 9(7): 619–623.

    Google Scholar 

  46. Blakemore, R. P., Magnetotactic bacteria, Science, 1975, 190: 377–379.

    Article  Google Scholar 

  47. Lower, S. K., Hochella, Jr. M. F., Beveridge, T. J., Bacterial recognition of mineral surfaces: nanoscale interactions between shewanella and α-FeOOH, Science, 2001, 292: 1360–1363.

    Article  Google Scholar 

  48. Glasauer, S., Langley, S., Beveridge, T. J., Intracellular iron minerals in a dissimilatory iron-reducing bacterium, Science, 2002, 295: 117–119.

    Article  Google Scholar 

  49. Robert, M., Berthelin, J., Role of biological and biochemical factors in soil mineral weathering (eds. Huang, P. M., Schnitzer, M.), Interactions of Soil Minerals with Natural Organics and Microbes, SSSA Special Publication 17, Soil Science Society of America, Madison, WI, 1986, 453–495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu Chen.

About this article

Cite this article

Chen, T., Xu, H., Ji, J. et al. Formation mechanism of ferromagnetic minerals in loess of China: TEM investigation. Chin. Sci. Bull. 48, 2260–2267 (2003). https://doi.org/10.1007/BF03182863

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03182863

Keywords

Navigation