Skip to main content

Advertisement

Log in

Synthesis, physical properties, and biomedical applications of magnetic nanoparticles: a review

  • Review Paper
  • Published:
Progress in Biomaterials Aims and scope Submit manuscript

Abstract

Recent innovations in nanotechnology have opened the applicability of multifunctional nanoparticles (NPs) in biomedical diagnosis and treatment. The examples of NPs which have attracted considerable attention in recent years are metals (e.g., Au, Ag, Mg), alloys (e.g., Fe–Co, Fe–Pd, Fe–Pt, Co–Pt), iron oxides (e.g., Fe2O3 and Fe3O4), substituted ferrites (e.g., MnFe2O4 and CoFe2O4), manganites (e.g., \({\mathrm{La}}_{0.67}{\mathrm{Sr}}_{0.33}{\mathrm{MnO}}_{3}\)), etc. Special attention has been paid to magnetic NPs (MNPs), as they are the potential candidates for several biomedical appliances, such as hyperthermia applications, magnetic resonance imaging, contrast imaging, and drug delivery. To achieve effective MNPs, a thorough investigation on the synthesis, and characteristic properties, including size, magnetic properties, and toxicity, is required. Furthermore, the surfaces of the NPs must be tailored to improve the biocompatibility properties and reduce agglomeration. The present review focuses on different mechanisms to develop biocompatible MNPs. The utility of these MNPs in various biomedical applications, especially in treating and diagnosing human diseases, such as targeted drug delivery, hyperthermia treatment for cancer, and other biomedical diagnoses, is thoroughly discussed in this article. Different synthetic processes and important physical properties of these MNPs and their biocomposites are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reprinted from Ref. Milichko et al. (2013), Copyright (2013), with permission from Springer

Fig. 3

(Reprinted from Ref. Ruthradevi et al. 2017, Copyright (2017), with permission from Elsevier)

Fig. 4

(Reprinted from Ref. Zhang et al. 2021, Copyright (2021), with permission from Elsevier)

Fig. 5

(Reprinted from Ref. Mirzaei et al. 2016, Copyright (2016), with permission from Elsevier)

Fig. 6

(Reprinted from Ref.  Hastak et al. 2018, Copyright (2013), with permission from Springer)

Fig. 7

(Reprinted from Ref. Doaga et al. 2013, Copyright (2013), with permission from Elsevier)

Fig. 8

(Reprinted from Ref. Doaga et al. 2013, Copyright (2013), with permission from Elsevier)

Fig. 9

(Reprinted from Ref. Behdadfar et al. 2012, Copyright (2012), with permission from Elsevier)

Fig. 10

(Reprinted from Ref. Luong et al. 2011, Copyright (2011), with permission from Elsevier)

Fig. 11

(Reprinted from Ref. Jain et al. 2008, Copyright (2008), with permission from Elsevier)

Fig. 12

(Reprinted from Ref. Francolini et al. 2010, Copyright (2010), with permission from Elsevier)

Fig. 13

(Reprinted from Ref. Singh and Sahoo et al. 2014, Copyright (2014), with permission from Elsevier)

Fig. 14

(Reprinted from Ref. Sanpo et al. 2013, Copyright (2013), with permission from Elsevier)

Fig. 15

(Reprinted from Ref. Sanpo et al. 2013, Copyright (2013), with permission from Elsevier)

Fig. 16
Fig. 17

(Reprinted from Ref. Biswas et al. 2016, Copyright (2016), with permission from Taylor & Francis)

Fig. 18

(Reprinted from Ref. Keshri et al. 2014, Copyright (2014), with permission from Taylor & Francis)

Fig. 19

(Reprinted from Ref. Biswas et al. 2016, Copyright (2016), with permission from Taylor & Francis)

Fig. 20

(Reprinted from Ref. Keshri et al. 2014, Copyright (2014), with permission from Taylor & Francis); and TEM of \({\mathrm{La}}_{0.76}{\mathrm{Sr}}_{0.24}{\mathrm{MnO}}_{3+\updelta }\) (Reprinted from Ref. Uskoković et al. 2006, Copyright (2006), with permission from Elsevier)

Fig. 21

(Reprinted from Ref. Biswas et al. 2016, Copyright (2016), with permission from Taylor & Francis)

Fig. 22

(Reprinted from Ref. Keshri et al. 2014, Copyright (2014), with permission from Taylor & Francis)

Fig. 23

(Reprinted from Ref. Biswas et al. 2016, Copyright (2016), with permission from Taylor & Francis)

Fig. 24

(Reprinted from Ref. Manh et al. 2014, Copyright (2014), with permission from Elsevier)

Fig. 25

(Reprinted from Ref. Uskoković et al. 2006, Copyright (2006), with permission from Elsevier)

Fig. 26

(Reprinted from Ref. Kale et al. 2006, Copyright (2006), with permission from Elsevier)

Fig. 27

(Reprinted from Ref. Soleymani et al. 2017, Copyright (2017) Royal Society of Chemistry)

Fig. 28

(Reprinted from Ref. Manh et al. 2014, Copyright (2014), with permission from Elsevier)

Fig. 29

(Reprinted from Ref. Santos et al. 2021, Copyright (2021), with permission from Elsevier)

Fig. 30

(Reprinted from Ref. Ferreira et al. 2021, Copyright (2021), with permission from MDPI)

Similar content being viewed by others

Data availability

The data are available with the concerned authors of different papers of this review article.

References

  • Ahmad A, Bae H, Rhee I (2018) Silica-coated gadolinium-doped lanthanum strontium manganite nanoparticles for self-controlled hyperthermia applications. AIP Adv 8:015108–015116

    Article  Google Scholar 

  • Ansar EB, Ajeesh M, Yokogawa Y, Wunderlich W, Varma HK (2012) Synthesis and characterization of iron oxide embedded hydroxyapatite. J Am Ceram Soc Bioceram 95:2695–2699

    Article  CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  • Atsarkin VA, Generalov AA, Demidov VV, Mefed AE, Markelova MN, Gorbenko OY, Kaul AR, Roy EJ, Odintsov BM (2009) Critical RF losses in fine particles of La1-xAgyMnO3+δ: prospects for temperature-controlled hyperthermia. J Magn Magn Mater 321:3198–3202

    Article  CAS  Google Scholar 

  • Bagaria HG, Johnson DT, Srivastava C, Thompson GB, Shamsuzzoha M, Nikles DE (2007) Formation of FePt NPs by organometallic synthesis. J Appl Phys 101:104313–104318

    Article  Google Scholar 

  • Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, Morales MDP, Mozaffari M (2012) Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J Solid State Chem 187:20–26

    Article  CAS  Google Scholar 

  • Bhagwata VR, Humbeb AV, Morec SD, Jadhav KM (2019) Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. J Mater Sci Eng B 248:114388–114393

    Article  Google Scholar 

  • Bhavani P, Rajababu CH, Arif MD, Venkata I, Reddy S, Reddy NR (2017) Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. J Magn Magn Mater 426:459–466

    Article  CAS  Google Scholar 

  • Bhayani KR, Kale SN, Arora S, Rajagopal R, Mamgain H, Kaul-Ghanekar R, Kundaliya DC, Kulkarni SD, Pasricha R, Dhole SD, Ogale SB, Paknikar KM (2007) Protein and polymer immobilized La0.7Sr0.3MnO3 nanoparticles for possible biomedical applications. Nanotechnology 18:345101–345108

    Article  Google Scholar 

  • Biswas S, Keshri S, Goswami S, Isaac J, GangulyS PN (2016) Antibiotic loading and release studies of LSMO nanoparticles embedded in an acrylic polymer. Phase Transitions 89:1203–1212

    Article  CAS  Google Scholar 

  • Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23–30

    Article  Google Scholar 

  • Campos I, Espindola A, Chagas C, Barbosa E, Castro CE, Molina C, Fonseca FLA, Haddad PS (2020) Biocompatible superparamagnetic nanoparticles with ibuprofen as potential drug carriers Campos. SN Appl Sci 2:456–468

    Article  CAS  Google Scholar 

  • Chand U, Yadav K, Gaur A, Varma GD (2010) Effect of different synthesis techniques on structural, magnetic and magneto-transport properties of manganite. J Rare Earths 28:760–764

    Article  CAS  Google Scholar 

  • Chandra S, Barick KC, Bahadur D (2011) Oxide and hybrid nanostructures for therapeutic applications. Adv Drug Deliv Rev 63:1267–1281

    Article  CAS  Google Scholar 

  • Cheng X, Kuhn L (2007) Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomed 2:667–674

    CAS  Google Scholar 

  • Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–345

    Article  CAS  Google Scholar 

  • Cui H, Liu Y, Ren W (2013) Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24:93–97

    Article  CAS  Google Scholar 

  • Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8:035003–035015

    Article  CAS  Google Scholar 

  • Demin AM, Maksimovskikh AI, Mekhaev AV, Kuznetsov DK, Minin AS, Pershinad AG, Uimin MA, Shur VY, Krasnov VP (2021) Silica coating of Fe3O4 magnetic nanoparticles with PMIDA assistance to increase the surface area and enhance peptide immobilization efficiency. Ceram Int 47:23078–23087

    Article  CAS  Google Scholar 

  • Dhillon G, Kumar N, Chitkara M, Sandhu IS (2020) Effect of A-site substitution and calcination temperature in Fe3O4 spinel ferrites. J Mater Sci: Mater Electron 31:18903–18912

    Google Scholar 

  • Doaga A, Cojocariu AM, Amin W, Heib F, Bender P, Hempelmann R, Caltun OF (2013) Synthesis and characterizations of manganese ferrites for hyperthermia applications. Mater Chem Phys 143:305–310

    Article  CAS  Google Scholar 

  • Ferreira MC, Pimentel B, Andrade V, Zverev V, Gimaev RR, Pomorov AS, Pyatakov A, Alekhina Y, Komlev A, Makarova L, Perov N, Reis MS (2021) Understanding the dependence of nanoparticles magnetothermal properties on their size for hyperthermia applications: a case study for La-Sr manganites. Nanomaterials 11:1826–1839

    Article  CAS  Google Scholar 

  • Foresti ML, Vazquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467

    Article  CAS  Google Scholar 

  • Francolini I, Palombo M, Casini G, D’Ilario L, Martinelli A, Rinaldelli V, Piozzi A (2010) Image-guided and triggered drug release. Novel manganese–ferrite nanocomposites for targeted delivery of anticancer drugs. J Control Release 148:57–73

    Article  Google Scholar 

  • Gao F, Xie W, Miao Y, Wang D, Guo Z, Ghosal A, Li Y, Wei Y, Feng SS, Zhao L (2019) Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention. Adv Healthc Mater 8:1900203–1900217

    Article  Google Scholar 

  • Giacalone G, Hillaireau H, Capiau P, Chacun H, Reynaud F, Fattal E (2014) Stabilization and cellular delivery of chitosan polyphosphate nanoparticles by incorporation of iron. J Control Release 194:211–219

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Hastak V, BandI S, Kashyap S, Singh S, Luqman S, Lodhe M, Peshwe DR, Srivastav AK (2018) Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. J Mater Sci: Materi Med 29:154–162

    Google Scholar 

  • Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817

    Article  CAS  Google Scholar 

  • Hedayati K, Goodarzi M, Kord M (2016) Green and facile synthesis of Fe3O4-PbS magnetic nanocomposites applicable for the degradation of toxic organic dyes. Main Group Met Chem 39:183–194

    Article  CAS  Google Scholar 

  • Horiki M, Nakagawa T, Seino S, Yamamoto TA (2013) Heating ability of La–Sr–Mn–Cu perovskite spheres under an alternating current magnetic field for magnetic hyperthermia mediators. J Magn Magn Mater 329:49–52

    Article  CAS  Google Scholar 

  • Hou CH, Hou SM, Hsueh YS, Lin J, Wu HC, Lin FH (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials 30:3956–3960

    Article  CAS  Google Scholar 

  • Inukai A, Sakamoto N, Aono H, Sakurai O, Shinozaki K, Suzuki H, Wakiya N (2011) Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis. J Magn Magn Mater 323:965–969

    Article  CAS  Google Scholar 

  • Ishaq K, Saka AA, Kamardeen AO, Ahmed A, Alhassan MI, Abdullahi H (2017) Characterization and antibacterial activity of nickel ferrite doped α- alumina nanoparticle. Eng Sci Technol Int J 20:563–569

    Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  CAS  Google Scholar 

  • Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of ‘“heat-controlled necrosis”’ with heat shock protein expression. Cancer Immunol Immunother 55:320–328

    Article  CAS  Google Scholar 

  • Iwasaki T, Nakatsuka R, Murase K, Takata H, Nakamura H, Watano S (2013) Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route. Int J Mol Sci 14:9365–9378

    Article  Google Scholar 

  • Jadhav SV, Nikama DS, Khot VM, Mali SS, Hong CK, Pawar SH (2015) PVA and PEG functionalized LSMO nanoparticles for magnetic fluid hyperthermia application. Mater Charact 102:209–220

    Article  CAS  Google Scholar 

  • Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021

    Article  CAS  Google Scholar 

  • Jayalekshmi AC, Sharma CP (2015) Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application. Colloids Surf B Biointerfaces 126:280–287

    Article  CAS  Google Scholar 

  • Joshi L, Keshri S (2010) Enhanced CMR properties of La0.67Ca0.33MnO3 sintered at different temperatures. Phase Transitions 83:263–275

    Article  CAS  Google Scholar 

  • Kale SN, Arora S, Bhayani KR, Paknikar KM, Jani M, Wagh UV, Kulkarni SD, Ogale SB (2006) Cerium doping and stoichiometry control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Toxicology 2:217–221

    CAS  Google Scholar 

  • Kaman O, Dědourkova T, Koktan J, Kuličkova J, Maryško M, Veverka P, Havelek R, Královec K, Turnovcová K, Jendelová K, Schröfel A, Svoboda L (2016) Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity. J Nanopart Res 18:100. https://doi.org/10.1007/s11051-016-3402-5

    Article  CAS  Google Scholar 

  • Kandpal ND, Sah N, Loshali R, Joshi R, Prasad J (2014) Coprecipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73:87–90

    CAS  Google Scholar 

  • Karaçam R, Yetim NK, Koç MM (2020) Structural and magnetic investigation of Bi2S3@Fe3O4 nanocomposites for medical applications. J Supercond Nov Magn 33:2715–2725

    Article  Google Scholar 

  • Karunamoorthi R, Kumar GS, Prasad AI, Vatsa RK, Thamizhavel A, Girija EK (2014) Fabrication of a novel biocompatible magnetic biomaterial with hyperthermia potential. J Am Ceram Soc 97:1115–2112

    Article  CAS  Google Scholar 

  • Keshri S, Biswas S, Wiśniewski P (2016) Studies on characteristic properties of superparamagnetic La0.67Sr0.33-xKxMnO3 nanoparticles. J Alloys Compd 656:245–252

    Article  CAS  Google Scholar 

  • Keshri S, Kumar V, Wisniewski P, Kamzin A (2014) Synthesis and characterization of LSMO manganite–based biocomposite. Phase Transitions 87:468–476

    Article  CAS  Google Scholar 

  • Khan AS, Nasir MF, Khan MT, Murtaza A, Hamayun MA (2021) Study of structural, magnetic and radio frequency heating aptitudes of pure and (Fe-III) doped manganite (La1-xSrxMnO3) and their incorporation with Sodium Poly-Styrene Sulfonate (PSS) for magnetic hyperthermia applications. Phys B Condens Matter 600:412627–412634

    Article  CAS  Google Scholar 

  • Khochaiche A, Westlake M, O’Keefe A, Engels E, Vogel S, Valceski M, Li N, Rule KC, Horvat J, Konstantinov K, Rosenfeld A, Lerch M, Corde S, Tehei M (2021) First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement. Mater Sci Eng C 123:111970–111985

    Article  CAS  Google Scholar 

  • Khursheed R, Dua K, Vishwas S, Gulati M, Jha NJ, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK (2022) Biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. Biomed Pharmacother 150:112951–112976

    Article  CAS  Google Scholar 

  • Kim Y, Lee M, Kim C, Chung G, Kim C, Kim I (2005) Detection of liver metastases: gadobenate dimeglumine-enhanced three-dimensional dynamic phases and one-hour delayed-phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur J Radiol 15:220–228

    Article  Google Scholar 

  • Kluchova K, Zboril R, Tucek J, Pecova M, Zajoncova L, Safarik I, Mashlan M, Markova I, Jancik D, Sebela M, Bartonkova H, Bellesi V, Novak P, Petridis D (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis – their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30:2855–2863

    Article  CAS  Google Scholar 

  • Kumar P, Khanduri H, Pathak S, Singh A, Basheed GA, Pant RP (2020) Temperature selectivity for single phase hydrothermal synthesis of PEG-400 coated magnetite nanoparticle. Dalton Trans 49:8672–8683

    Article  CAS  Google Scholar 

  • Lin HM, Wang WK, Hsiung PA, Shyu SG (2010) Light-sensitive intelligent drug delivery systems of coumarin-modified mesoporous bioactive glass. Acta Bio-Mater 6:3256–3263

    Article  CAS  Google Scholar 

  • Luong TT, Ha TP, Tran LD, Do MH, Mai TT, Pham NH, Phan HBT, Pham GHT, Hoang NMT, Nguyen QT, Nguyen PX (2011) Design of carboxylated Fe3O4/poly(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect. Colloids Surf A Physicochem Eng Aspects 384:23–30

    Article  CAS  Google Scholar 

  • Manh DH, Phong PT, Nam PH, Tung DK, Phuc NX, Lee IJ (2014) Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications. Physica B 444:94–102

    Article  CAS  Google Scholar 

  • Manju BG, Raji P (2019) Biological synthesis, characterization, and antibacterial activity of nickel‑doped copper ferrite nanoparticles. Applied Physics A 125:313–326

    Article  Google Scholar 

  • Milichko VA, Nechaev AI, Valtsifer VA, Strelnikov VN, Kulchin YN, Dzyuba VP (2013) Photo-induced electric polarizability of Fe3O4 nanoparticles in weak optical fields. Nanoscale Res Lett 8:317–324

    Article  Google Scholar 

  • Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol-gel method. Ceramics Int 42:6136–6144

    Article  CAS  Google Scholar 

  • Mourino V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three dimensional scaffolds. J R Soc Interface 7:209–227

    Article  CAS  Google Scholar 

  • Müller R, Hergt R, Dutz S, Zeisberger M, Gawalek W (2006) Nanocrystalline iron oxide and Ba ferrite particles in the superparamagnetism–ferromagnetism transition range with ferrofluid applications. J Phys Condens Matter 18(38):S2527–S2542

    Article  Google Scholar 

  • Ona WP, Charoenphandhu N, Tang IM, Jongwattanapisan P, Krishnamra N, Hoonsawat R (2011) Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates: a drug delivery system. Mater Chem Phys 131:485–494

    Article  Google Scholar 

  • Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuichi WI (1994) A novel skeletal drug delivery system using a self-setting calcium phosphate cement. 5. Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug. J Pharm Sci 83:1565–1568

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Pattanayak S, Mollick Md MR, Maity D, Chakraborty S, Dash SK, Chattopadhyay S, Roy S, Chattopadhyay D, Chakraborty M (2017) Butea monosperma bark extract mediated green synthesis of silver nanoparticles: characterization and biomedical applications. J Saudi Chem Soc 21:673–684

    Article  CAS  Google Scholar 

  • Perez RA, Patel KD, Kim HW (2015) Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv 5:13411–13419

    Article  CAS  Google Scholar 

  • Phong PT, Manh DH, Nguyen LH, Tung DK, Phuc NX, Lee IJ (2014) Studies of superspin glass state and AC-losses in La0.7Sr0.3MnO3 nanoparticles obtained by high-energy ball-milling. J Magn Magn Mater 368:240–245

    Article  CAS  Google Scholar 

  • Prucek R, Tucek J, Kilianova M, Panacek A, Kvitek L, Filip J, Kolar M, Tomankova K, Zboril R (2011) The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32:4704–4713

    Article  CAS  Google Scholar 

  • Qin W, Yang C, Yi R, Gao G (2011) Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. J Nanomater 2011:1–5

    Article  Google Scholar 

  • Rahman MT, Hoque MA, Rahman GT, Azmi MM, Gafur MA, Khan RA, Hossain MK (2019) Fe2O3 Nanoparticles dispersed unsaturated polyester resin based nanocomposites: effect of gamma radiation on mechanical properties. Radiation Effects Defects Solids 174:480–493

    Article  CAS  Google Scholar 

  • Rao CNR, Raveau B (1998) Colossal magnetoresistance, charge ordering and related properties of manganese oxides. World Scientific, Singapore

    Book  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  • Ruthradevi T, Akbar J, Suresh Kumar G, Thamizhavel A, Kumar GA, Vatsa RK, Dannangoda GC, Martirosyan KS, Girija EK (2017) Investigations on nickel ferrite embedded calcium phosphate nanoparticles for biomedical applications. J Alloys Compd 695:3211–3219

    Article  CAS  Google Scholar 

  • Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837

    Article  CAS  Google Scholar 

  • Santos ECS, Cunha JA, Martins MG, Galeano-Villar BM, Caraballo-Vivas RJ, Leite PB, Rossi AL, Garcia F, Finotelli PV, Ferraz HC (2021) Curcuminoids-conjugated multicore magnetic nanoparticles: Design and characterization of a potential theranostic nanoplatform. J Alloys Compd 879:160448–160460

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Coll Surf B Biointerf 73:332–338

    Article  CAS  Google Scholar 

  • Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19:478–481

    Article  Google Scholar 

  • Singh RA, Srinivasan A (2011) Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite. J Magn Magn Mater 323:330–333

    Article  CAS  Google Scholar 

  • Soleymani M, Edrissi M, Alizadeh AH (2017) Tailoring La1-xSrxMnO3 (0.25≤x≤0.35) nanoparticles for self-regulating magnetic hyperthermia therapy; in vivo study. J Mater Chem B 5:4705–4712

    Article  CAS  Google Scholar 

  • Sounderya N, Zhang Y (2008) Use of core/shell structured nanoparticles for biomedical applications. Recent Pat Biomed Eng 1:34–42

    Article  CAS  Google Scholar 

  • Spasojevic V, Mrakovic A, Perovic M, Kusigerski V, Blanusa J (2011) Superspin-glass like behavior of nanoparticle La0.7Ca0.3MnO3 obtained by mechanochemical milling. J Nanopart Res 13:763–771

    Article  CAS  Google Scholar 

  • Sun W, Mignani S, Shen M, Shi X (2016) Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov Today 21:1873–1885

    Article  CAS  Google Scholar 

  • Thorat ND, Shinde KP, Pawar SH, Barick KC, Betty CA, Ningthoujam RS (2012) Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans 41:3060–3071

    Article  CAS  Google Scholar 

  • Trana N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767

    Article  Google Scholar 

  • Tumturk H, Sahin F, Turan E (2014) Magnetic nanoparticles coated with different shells for biorecognition: high specific binding capacity. Analyst 139:1093–1100

    Article  CAS  Google Scholar 

  • Uskoković V, Kosak A, Drofenik M (2006) Silica–coated lanthanum–strontium manganites for hyperthermia treatments. Mats Lett 60:2620–2622

    Article  Google Scholar 

  • Verron E, Khairoun I, Guicheux J, Bouler JM (2010) Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 15:547–552

    Article  CAS  Google Scholar 

  • Wei Y, Liao R, Mahmood AA, Xu H, Zhou Q (2017) pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomat 55:194–203

    Article  CAS  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  CAS  Google Scholar 

  • Wu Y, Jiang W, Wen X, He B, Zeng X, Wang G, Gu Z (2010) A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomed Mater 5:015001–015008

    Article  Google Scholar 

  • Wu H, Song L, Chen L, Huang Y, Wu Y, Zang F, An Y, Lyu H, Ma M, Chen J (2017) Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale 9:16175–16182

    Article  CAS  Google Scholar 

  • Xiao M, Chen YN, Biao MN, Zhang XD, Yang BC (2017) Bio-functionalization of biomedical metals. Mater Sci Eng C Mater Biol Appl 70:1057–1070

    Article  CAS  Google Scholar 

  • Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309:307–311

    Article  CAS  Google Scholar 

  • Yetim NK, Baysak FK, Koç MM, Nartop D (2020) Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications. J Mater Sci Mater Electron 31:18278–18288

    Article  Google Scholar 

  • Yin ZF, Wu L, Yang HG, Su YH (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys C 14:4844–4858

    Article  Google Scholar 

  • Zahrae M, Monshi A, Puerto Morales M, Shahbazi-Gahrouei D, Amirnasr M, Behdadfar B (2015) Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite. J Magn Magn Mater 393:429–436

    Article  Google Scholar 

  • Zhang X, Chen Z, Liu J, Cui S (2021) Synthesis and characterization of Fe3O4 nanoparticles on infrared radiation by xerogel with sol-gel method. Chem Phys Lett 764:138265–138270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We do acknowledge the Central Instrumentation Facility of Birla Institute of Technology, Mesra, Ranchi, India, for XRD and SEM support.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Keshri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshri, S., Biswas, S. Synthesis, physical properties, and biomedical applications of magnetic nanoparticles: a review. Prog Biomater 11, 347–372 (2022). https://doi.org/10.1007/s40204-022-00204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40204-022-00204-8

Keywords

Navigation