Skip to main content

Recent Advances and Future Prospects of Microalgal Lipid Biotechnology

  • Chapter
  • First Online:
Algal Biofuels

Abstract

Microalgae are ubiquitous in nature that grow rapidly and thrive in harsh conditions due to their single cellular or simple multicellular structure. Microalgae are characterized as oleaginous, as they accumulate appreciable quantity of lipids ranging between 20 and 70% on dry weight basis depending on the surrounding environmental conditions. Extensive research has been performed on different aspects of microalgal lipids, as they are a source of potential compounds that have wide applications in food, chemical, pharmaceutical, and cosmetology industries. Oil-accumulating algae have the potential to enable the commercial-scale biodiesel production. This chapter discusses the current knowledge in microalgae lipids and their metabolism and various approaches and biotechnological applications for the enhancement of lipid content. Different environmental stress conditions such as nutrients (nitrogen and phosphorus) limitation, temperature, light, salinity, and heavy metals that lead to alteration of the lipid biosynthetic pathways toward the neutral lipids (20–50% DCW) formation and accumulation, have been exploited by researchers to obtain high lipid-accumulating strains for biodiesel production. Supplementation of CO2 and phytohormones has also been used to improve the microalgae biomass/lipid productivity. Recently, genetic and metabolic engineering tools have been used for a characterization of genes encoding lipid biosynthesis enzymes and further develop highly efficient and potent strains that enable the algae-based biodiesel production feasible. In addition, microalgae have the ability to uptake CO2 and grow on wastewaters that can be directed toward development of an eco-friendly and economically feasible strategy to produce biomass for biodiesel generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production. A review. Renew Sust Energ Rev 15:584–593

    Article  CAS  Google Scholar 

  • Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13(4):540–550

    Article  CAS  Google Scholar 

  • Alonso DL, Belarbi EH, Fernández-Sevilla JM, Rodríguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  CAS  Google Scholar 

  • Ansari FA, Shriwastav A, Gupta SK, Rawat I, Guldhe A, Bux F (2015) Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery. Bioresour Technol 179:559–564

    Article  CAS  Google Scholar 

  • Baba M, Kikuta F, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii. Bioresour Technol 109:266–270

    Article  CAS  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297

    Article  CAS  Google Scholar 

  • Bandarra NM, Pereira PA, Batista I, Vilela MH (2003) Fatty acids, sterols and α-tocopherol in Isochrysis galbana. J Food Lipids 10:25–34

    Article  CAS  Google Scholar 

  • Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T (2013) Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenergy 54:83–88

    Article  CAS  Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493

    Article  CAS  Google Scholar 

  • Bellou S, Moustogianni A, Makri A, Aggelis G (2012) Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Biller P, Ross A (2014) Pyrolysis GC-MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res 6:91–97

    Article  Google Scholar 

  • Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS One 7(9):e42949

    Article  CAS  Google Scholar 

  • Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17(3):496–505

    Article  CAS  Google Scholar 

  • Bono MS Jr, Ahner BA, Kirby BJ (2013) Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell. Bioresour Technol 143:623–631

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig adapt strategies glob chang 18:13–25

    Article  Google Scholar 

  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. Eur J Biochem 267(1):85–96

    Article  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolphanderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast Transformation in Chlamydomonas with high-velocity microprojectiles. Science 240(4858):1534–1538

    Article  CAS  Google Scholar 

  • Breuer G, de Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 7:70

    Article  CAS  Google Scholar 

  • Brown TD, Jones-Mortimer MC, Kornberg HL (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102(2):327–336

    Article  CAS  Google Scholar 

  • Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184

    Article  CAS  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7:381–388

    Article  CAS  Google Scholar 

  • Chaturvedi R, Fujita Y (2006) Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54(3):208–219

    Article  CAS  Google Scholar 

  • Chen Y, Vaidyanathan S (2013) Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Anal Chim Acta 776:31–40

    Article  CAS  Google Scholar 

  • Chen YF (2011) Production of biodiesel from algal biomass: current perspectives and future. Academic Press, Waltham, p. 399

    Google Scholar 

  • Cheng RB, Ma RJ, Li K, Rong H, Lin XZ, Wang ZK, Yang SJ, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167(3):179–186

    Article  CAS  Google Scholar 

  • Chia MA, Lombardi AT, Melao MDGG (2013) Growth and biochemical composition of Chlorella vulgaris in different growth media. An Acad Bras Cienc 85:1427–1438

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  Google Scholar 

  • Choi WJ, Hartono MR, Chan WH, Yeo SS (2011a) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89:1255–1264

    Article  CAS  Google Scholar 

  • Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RAI, Min B, Song H, Lee DS, Kim JR, Cho Y, Hong S, Jeon BH (2011b) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ Environ Sci 4:3513–3520

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Costa JAV, Cozza KL, Oliveira L, Magagnin G (2001) Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J Microbiol Biotechnol 17:439–442

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1–2):31–41

    Article  CAS  Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2014) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209

    Article  CAS  Google Scholar 

  • Czerpak R, Bajguz A (1997) Stimulatory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc Bot Pol 66:41–46

    Article  CAS  Google Scholar 

  • Davis MS, Solbiati J, Cronan JE (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275(37):28593–28598

    Article  CAS  Google Scholar 

  • De Bhowmick G, Koduru L, Sen R (2015) Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application-A review. Renew Sust Energ Rev 50:1239–1253

    Article  CAS  Google Scholar 

  • de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69

    Article  CAS  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  Google Scholar 

  • Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125(2):1103–1114

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Deng XD, Fei XW, Li YJ (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270

    CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231

    Article  Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31(6):1004–1012

    Article  CAS  Google Scholar 

  • Eldalatony MM, Kabra AN, Hwang JH, Govindwar SP, Kim KH, Kim H, Jeon BH (2016) Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess Biosyst Eng 39(1):95–103

    Article  CAS  Google Scholar 

  • Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8(8):610–618

    Article  CAS  Google Scholar 

  • Fakhry EM, Maghraby DM (2015) Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot Stud 56:6

    Article  CAS  Google Scholar 

  • Fan JH, Cui YB, Wan MX, Wang WL, Li YG (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17

    Article  CAS  Google Scholar 

  • Feng P, Zhongyang D, Zhengyu H, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584

    Article  CAS  Google Scholar 

  • Fernandez E, Schnell R, Ranum LPW, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and Characterization of the Nitrate Reductase Structural Gene of Chlamydomonas-Reinhardtii. Proc Natl Acad Sci U S A 86(17):6449–6453

    Article  CAS  Google Scholar 

  • Gatenby CM, Parker BC, Neves RJ (1997) Growth and survival of juvenile rainbow mussels, Villosa iris (Lea, 1829) (Bivalvia: Unionidae), reared on algal diets and sediment. Am Malacol Bull 14:57–66

    Google Scholar 

  • Gonzalez-Fernandez C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30(6):1655–1661

    Article  CAS  Google Scholar 

  • Gordillo FJL, Goutx M, Figueroa FL, Niell FX (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10:135–144

    Article  CAS  Google Scholar 

  • Granados MR, Acien FG, Gomez C, Fernandez-Sevilla JM, Molina Grima E (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (chlorophyta) during high ph-induced cell cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Guldhe A, Singh B, Rawat I, Bux F (2014) Synthesis of biodiesel from Scenedesmus sp. by microwave and ultrasound assisted in situ transesterification using tungstated zirconia as a solid acid catalyst. Chem Eng Res Des 92(8):1503–1511

    Article  CAS  Google Scholar 

  • Guo SL, Zhao XQ, Tang Y, Wan C, Alam MA, Ho SH, Bai FW, Chang JS (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163(1):61–68

    Article  CAS  Google Scholar 

  • Gupta SK, Kumar M, Guldhe A, Ansari FA, Rawat I, Kanney K, Bux F (2014) Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Convers Manag 85:537–544

    Article  CAS  Google Scholar 

  • Gutierrez CL, Gimpel J, Escobar C, Marshall SH, Henriquez V (2012) Chloroplast genetic tool for the green microalgae haematococcus pluvialis (chlorophyceae, volvocales). J Phycol 48(4):976–983

    Article  CAS  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  Google Scholar 

  • Harper JDI, Wu L, Sakuanrungsirikul S, John PCL (1995) Isolation and partial characterization of conditional cell-division cycle mutants in Chlamydomonas. Protoplasma 186(3–4):149–162

    Article  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183(4120):46–51

    Article  CAS  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91(6):679–684

    Article  CAS  Google Scholar 

  • He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228

    Article  CAS  Google Scholar 

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology - From genetics to synthetic biology. Biotechnol Adv 33(6):1194–1203

    Article  CAS  Google Scholar 

  • Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Hunt RW, Chinnasamy S, Das KC (2011) The effect of naphthalene acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures. Appl Biochem Biotechnol 164:1350–1365

    Article  CAS  Google Scholar 

  • Jako C, Kumar A, Wei YD, Zou JT, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126(2):861–874

    Article  CAS  Google Scholar 

  • Jeon BH, Choi JA, Kim HC, Hwang JH, Abou-Shanab R, Dempsey B, Regan J, Kim J (2013) Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels 6:37

    Article  CAS  Google Scholar 

  • Ji MK, Abou-Shanab RAI, Kim SH, Salama ES, Lee SH, Kabra AN, Lee YS, Hong S, Jeon BH (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148

    Article  Google Scholar 

  • Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 10:3336–3341

    Article  CAS  Google Scholar 

  • Jiang Y, Chen F (1999) Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. J Ind Microbiol Biotechnol 23:508–513

    Article  CAS  Google Scholar 

  • Joh T, Yoshida T, Yoshimoto M, Miyamoto T, Hatano S (1993) Composition and positional distribution of fatty acids in polar lipids from Chlorella ellipsoidea differing in chilling susceptibility and frost hardiness. Physiol Plant 89:285–290

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS (2015) Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry 111:65–71

    Article  CAS  Google Scholar 

  • Kaewkannetra P, Enmak P, Chiu TY (2012) The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnol Bioprocess Eng 17:591–597

    Article  CAS  Google Scholar 

  • Kang NK, Lee B, Choi GG, Moon M, Park MS, Lim JK, Yang JW (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31:861–867

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of chlamydomonas-reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232

    Article  CAS  Google Scholar 

  • Kumar MS, Hwang JH, Abou-Shanab RAI, Kabra AN, Ji MK, Jeon BH (2014) Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J Renew Sustain Ener 6:063107

    Article  CAS  Google Scholar 

  • Kumar P, Kumar P, Sharma PK, Sharma PK, Sharma D (2015) Micro-algal Lipids: a Potential Source of Biodiesel. JIPBS 2(2):135–143

    Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—chlamydomonas reinhardtii by agrobacterium tumefaciens. Plant Sci 166(3):731–738

    Article  CAS  Google Scholar 

  • Lacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, Franco TT (2011) Improving refinery wastewater for microalgal biomass production and CO2 biofixation: predictive modeling and simulation. J Pet Sci Eng 78:679–686

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  Google Scholar 

  • Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30(4):198–205

    Article  CAS  Google Scholar 

  • Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52

    Article  CAS  Google Scholar 

  • Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107(2):258–268

    Article  CAS  Google Scholar 

  • Liang KH, Zhang QH, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318

    Article  CAS  Google Scholar 

  • Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52(4):395–408

    Article  CAS  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Effects of nitrogen source and uv radiation on the growth, chlorophyll fluorescence and fatty acid composition of phaeodactylum tricornutum and chaetoceros muelleri (bacillariophyceae). J Photochem Photobiol B Biol 82:161–172

    Article  CAS  Google Scholar 

  • Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BWV, Ahmad AL (2012) Rapid magnetophoretic separation of microalgae. Small 8:1683–1692

    Article  CAS  Google Scholar 

  • Lin H, Castro NM, Bennett GN, San KY (2006) Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol 71(6):870–874

    Article  CAS  Google Scholar 

  • Liu BS, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24(2):300–309

    Article  CAS  Google Scholar 

  • Liu J, Yuan C, Hu G, Li F (2012) Effects of light Intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl Biochem Biotechnol 166:2127–2137

    Article  CAS  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  Google Scholar 

  • Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29(11):542–549

    Article  CAS  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  CAS  Google Scholar 

  • McLarnon-Riches CJ, Rolph CE, Greenway DLA, Robinson PK (1998) Effects of environmental factors and metals on Selenastrum capricornutum lipids. Phytochemistry 49:1241–1247

    Article  CAS  Google Scholar 

  • Merchant SS, Kropat J, Liu BS, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23(3):352–363

    Article  CAS  Google Scholar 

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    Article  CAS  Google Scholar 

  • Millan-Oropeza A, Torres-Bustillos LG, Fernandez-Linares L (2015) Simultaneous effect of nitrate (NO3−) concentration, carbon dioxide (CO2) supply and nitrogen limitation on biomass, lipids, carbohydrates and proteins accumulation in Nannochloropsis oculata. Biofuel Res J-Brj 2(1):215–U85

    Article  CAS  Google Scholar 

  • Misra N, Panda PK, Parida BK, Mishra BK (2012) Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses. Evol Bioinforma 8:545–564

    CAS  Google Scholar 

  • Misra R, Guldhe A, Singh P, Rawat I, Bux F (2014) Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: a sustainable approach for biodiesel production. Chem Eng J 255:327–333

    Article  CAS  Google Scholar 

  • Miyachi S, Kamiya A (1978) Wavelength effects on photosynthetic carbon metabolism in Chlorella. Plant Cell Physiol 19:277–288

    CAS  Google Scholar 

  • Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2013) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol 129:150–155

    Article  CAS  Google Scholar 

  • Mohammady NG, Fathy AA (2007) Humic acid mitigates viability reduction, lipids and fatty acids of Dunaliella salina and Nannochloropsis salina grown under nickel stress. Int J Bot 3:64–70

    Article  CAS  Google Scholar 

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  CAS  Google Scholar 

  • Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T (2013) Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp Strain JPCC DA0580-A high triglyceride producer. Mar Biotechnol 15(1):48–55

    Article  CAS  Google Scholar 

  • Najafi N, Ahmadi AR, Hosseini R, Golkhoo S (2011) Gamma irradiation as a useful tool for the isolation of astaxanthin-overproducing mutant strains of Phaffia rhodozyma. Can J Microbiol 57(9):730–734

    Article  CAS  Google Scholar 

  • Napier JA, Haslam RP, Beaudoin F, Cahoon EB (2014) Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr Opin Plant Biol 19:68–75

    Article  CAS  Google Scholar 

  • Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57(6):1140–1150

    Article  CAS  Google Scholar 

  • Niu YF, Yang ZK, Zhang MH, Zhu CC, Yang WD, Liu JS, Li HY (2012) Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. Biotechniques 52(6):1–3

    Google Scholar 

  • Noor-Mohammadi S, Pourmir A, Johannes TW (2014) Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnol Lett 36(3):561–566

    Article  CAS  Google Scholar 

  • Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146(2):167–178

    Article  CAS  Google Scholar 

  • O’Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL, Szyjka SJ, Yohn CB, Redding KE, Mendez MJ (2012) An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 40(6):2782–2792

    Article  CAS  Google Scholar 

  • Ong SC, Kao CY, Chiu SY, Tsai MT, Lin CS (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101(8):2880–2883

    Article  CAS  Google Scholar 

  • Padrova K, Lukavsky J, Nedbalova L, Cejkova A, Cajthaml T, Sigler K, Vitova M, Rezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451

    Article  CAS  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  CAS  Google Scholar 

  • Park WK, Yoo G, Moon M, Kim CW, Choi YE, Yang JW (2013) Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol 171:1128–1142

    Article  CAS  Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    Article  CAS  Google Scholar 

  • Parsaeimehr A, Sun Z, Dou X, Chen YF (2015) Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Biotechnol Biofuels 8:11

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73:57–66

    Article  CAS  Google Scholar 

  • Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28(6):910–918

    Article  CAS  Google Scholar 

  • Prabakaran P, Ravindran D (2013) Selection of microalgae for accumulation of lipid production under different growth conditions. Carib J Sci Tech 1:131–137

    Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae–a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  Google Scholar 

  • Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol 60(4):491–499

    Article  CAS  Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in phaeodactylum tricornutum. Metab Eng 13(1):89–95

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    Article  CAS  Google Scholar 

  • Rangasamy D, Ratledge C (2000) Genetic enhancement of fatty acid synthesis by targeting rat liver ATP: citrate lyase into plastids of tobacco. Plant Physiol 122(4):1231–1238

    Article  CAS  Google Scholar 

  • Raposo MFJ, Morais RMSC (2013) Influence of the growth regulators kinetin and 2, 4-D on the growth of two chlorophyte microalgae, Haematococcus pluvialis and dunaliella salina. J Basic Appl Sci 9:302–308

    Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, Molina MCR (2006) Effect of chromium on the fatty acid composition of two strains of euglena gracilis. Environ Pollut 141:353–358

    Article  CAS  Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds. Plant Physiol 113(1):75–81

    Article  CAS  Google Scholar 

  • Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24:394–400

    Article  CAS  Google Scholar 

  • Roessler PG (1990) Purification and Characterization of Acetyl-Coa Carboxylase from the Diatom Cyclotella-Cryptica. Plant Physiol 92(1):73–78

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436

    Article  CAS  Google Scholar 

  • Salama E-S, Abou-Shanab RAI, Kim JR, Lee S, Kim SH, Oh SE, Kim HC, Roh HS, Jeon BH (2014a) The effects of salinity on the growth and biochemical properties of Chlamydomonas mexicana GU732420 cultivated in municipal wastewater. Environ Technol 35:1491–1498

    Article  CAS  Google Scholar 

  • Salama E-S, Kabra AN, Ji MK, Kim JR, Min B, Jeon BH (2014b) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–0103

    Article  CAS  Google Scholar 

  • Schoerken U, Kempers P (2009) Lipid biotechnology: Industrial relevant production processes. Eur J Lipid Sci Technol 111:627–645

    Article  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) high lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553

    Article  CAS  Google Scholar 

  • Sheehan TDJ, Benemann J, Roessler P (1998) A look back at the U.S. Department of energy’s aquatic species program-biodiesel from algae. NREL/TP-580-24190.

    Google Scholar 

  • Shin H, Hong SJ, Kim H, Yoo C, Lee H, Choi HK, Lee CG, Cho BK (2015) Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour Technol 194:57–66

    Article  CAS  Google Scholar 

  • Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sust Energ Rev 55:1–16

    Article  CAS  Google Scholar 

  • Skrupski B, Wilson KE, Goff KL, Zou J (2014) Effect of pH on neutral lipid and biomass accumulation in microalgal strains native to the Canadian prairies and the Athabasca oil sands. J Appl Phycol 25:937–949

    Article  CAS  Google Scholar 

  • Sorokin C, Krauss RW (1958) The Effects of light intensity on the growth rates of green algae. Plant Physiol 33:109–113

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Stockenreiter M, Haupt F, Graber AK, Seppälä J, Spilling K, Tamminen T, Stibor H (2013) Functional group richness: Implications of biodiversity for light use and lipid yield in microalgae. J Phycol 49:838–847

    CAS  Google Scholar 

  • Subrahmanyam S, Cronan JE Jr (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180(17):4596–4602

    CAS  Google Scholar 

  • Sun Z, Dou X, Wu J, He B, Wang Y, Chen Y (2016) Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization. World J Microbiol Biotechnol 32:9

    Article  CAS  Google Scholar 

  • Sun J, Cheng J, Yang Z, Li K, Zhou J, Cen K (2015) Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation. Bioresour Technol 194:305–311

    Article  CAS  Google Scholar 

  • Sushchik NN, Kalacheva GS, Zhila NO, Gladyshev MI, Volova TG (2003) A temperature dependence of the intra- and extracellular fatty-acid composition of green algae and cyanobacterium. Russ J Plant Physiol 50:374–380

    Article  CAS  Google Scholar 

  • Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran. Renew Sust Energ Rev 15(4):1918–1927

    Article  CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101: 223–226.

    Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG (2013) The Effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review. J Plant Growth Regul 32:417–428

    Article  CAS  Google Scholar 

  • Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J Phycol 32:598–601

    Article  CAS  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4(1):12–21

    Article  CAS  Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Article  Google Scholar 

  • Thuriaux P, Nurse P, Carter B (1978) Mutants altered in the control co-ordinating cell division with cell growth in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 161(2):215–220

    CAS  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110(49):19748–19753

    Article  CAS  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5, 578, 472

    Google Scholar 

  • Verwoert II, van der Linden KH, Walsh MC, Nijkamp HJ, Stuitje AR (1995) Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol Biol 27(5):875–886

    Article  CAS  Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya, Simpson JP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8(11): e1003064

    Google Scholar 

  • Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162(1):3–12

    Article  CAS  Google Scholar 

  • Voigt J, Stolarczyk A, Zych M, Malec P, Burczyk J (2014) The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii. Plant Sci 215–216:39–47

    Article  CAS  Google Scholar 

  • Waltz E (2009) Biotech’s green gold? Nat Biotechnol 27:15–18

    Article  CAS  Google Scholar 

  • Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, Oyler GA, Betenbaugh MJ (2014) The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98(22):9473–9481

    Article  CAS  Google Scholar 

  • Wang DM, Ning K, Li J, Hu JQ, Han DX, Wang H, Zeng XW, Jing XY, Zhou Q, Su XQ, Chang XZ, Wang AH, Wang W, Jia J, Wei L, Xin Y, Qiao YH, Huang RR, Chen J, Han B, Yoon K, Hill RT, Zohar Y, Chen F, Hu Q, Xu J (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10(1):094

    Google Scholar 

  • Wang GY, Wang X, Liu XH (2011) Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. J Integr Plant Biol 53:246–252

    Article  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24(3):405–413

    Article  CAS  Google Scholar 

  • Wobbe L, Remacle C (2015) Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. J Biotechnol 201:28–42

    Article  CAS  Google Scholar 

  • Wu L, Chen PC, Lee CM (2013) The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeter Biodegr 85:506–510

    Article  CAS  Google Scholar 

  • Wynn JP, Hamid ABA, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145(Pt 8):1911–1917

    Article  CAS  Google Scholar 

  • Xin L, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  Google Scholar 

  • Xu XQ, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an antarctic hypersaline lake. Phytochemistry 45:655–658

    Article  CAS  Google Scholar 

  • Yang JS, Cao J, Xing GL, Yuan HL (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    Article  CAS  Google Scholar 

  • Yao S, Brandt A, Egsgaard H, Gjermansen C (2012) Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol Biochem 61:71–79

    Article  CAS  Google Scholar 

  • Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Factories 10:91

    Article  CAS  Google Scholar 

  • Zhang Q, Wang T, Hong Y (2014) Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake. Water Sci Technol 70:712–719

    Article  CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(Pt 7):2013–2025

    Article  CAS  Google Scholar 

  • Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9(6):909–923

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ravindran, B., Kurade, M.B., Kabra, A.N., Jeon, BH., Gupta, S.K. (2017). Recent Advances and Future Prospects of Microalgal Lipid Biotechnology. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_1

Download citation

Publish with us

Policies and ethics