Skip to main content
Log in

Effects of Light Intensity on the Growth and Lipid Accumulation of Microalga Scenedesmus sp. 11-1 Under Nitrogen Limitation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Scenedesmus spp. have been reported as potential microalgal species used for the lipid production. This study investigated the effects of light intensity (at three levels: 50, 250, and 400 μmol photons m−2 s−1) on the growth and lipid production of Scenedesmus sp. 11-1 under N-limited condition. Carotenoid to chlorophyll ratio was higher when algae 11-1 grew under 250 and 400 μmol photons m−2 s−1 than that under 50 μmol photons m−2 s−1, while protein contents was lower. Highest biomass yield (3.88 g L−1), lipid content (41.1 %), and neutral lipid content (32.9 %) were achieved when algae 11-1 grew at 400 μmol photons m−2 s−1. Lipid production was slight lower at 250 μmol photons m−2 s−1 level compared to 400 μmol photons m−2 s−1. The major fatty acids in the neutral lipid of 11-1 were oleic acid (43–52 %), palmitic acid (24–27 %), and linoleic acid (7–11 %). In addition, polyunsaturated fatty acids had a positive correlation with total lipid production, and monounsaturated fatty acids had a negative one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  2. Ho, S., Chen, W., & Chang, J. (2010). Bioresource Technology, 101, 8725–8730.

    Article  CAS  Google Scholar 

  3. Mandal, S., & Mallick, N. (2009). Applied Microbiology and Biotechnology, 84, 281–291.

    Article  CAS  Google Scholar 

  4. Li, X., Hu, H., & Zhang, Y. (2010). Bioresource Technology, 102, 3098–3102.

    Google Scholar 

  5. Lin, Q., & Lin, J. (2010). Bioresource Technology, 102, 1615–1621.

    Article  Google Scholar 

  6. Qian, K., & Michael, B. (1993). Applied Biochemistry and Biotechnology, 38, 93–103.

    Article  CAS  Google Scholar 

  7. Solovchenko, A. E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M. N. (2008). Journal of Applied Phycology, 20, 245–251.

    Article  CAS  Google Scholar 

  8. Griffiths, M., & Harrison, S. (2009). Journal of Applied Phycology, 21, 493–507.

    Article  CAS  Google Scholar 

  9. Pruvost, J., Van Vooren, G., Cogne, G., & Legrand, J. (2009). Bioresource Technology, 100, 5988–5995.

    Article  CAS  Google Scholar 

  10. Andersen, R. (2005). Algal culturing techniques. Burlington: Elsevier.

  11. Bligh, E. G., & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology, 377, 911–917.

    Article  Google Scholar 

  12. BorgstrÖM, B. (1952). Acta Physiologica Scandinavica, 25, 101–110.

    Article  Google Scholar 

  13. Beschkov, V., Velizarov, S., Agathos, S. N., & Lukova, V. (2004). Biochemical Engineering Journal, 17, 141–145.

    Article  CAS  Google Scholar 

  14. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Biochemical Society Transactions, 603, 591–592.

    Google Scholar 

  15. Minowa, T., Yokoyama, S-y, Kishimoto, M., & Okakurat, T. (1995). Fuel, 74, 1735–1738.

    Article  CAS  Google Scholar 

  16. Tang, H., Abunasser, N., Garcia, M. E. D., Chen, M., Simon Ng, K. Y., & Salley, S. O. (2010). Applied Energy, 88, 3324–3330.

    Article  Google Scholar 

  17. Gordillo, F., Goutx, M., Figueroa, F., & Niell, F. (1998). Journal of Applied Phycology, 10, 135–144.

    Article  CAS  Google Scholar 

  18. Mann, J. E., & Myers, J. (1968). Journal of Phycology, 4, 349–355.

    Article  CAS  Google Scholar 

  19. Molina, E., Acién Fernández, F. G., García Camacho, F., Camacho Rubio, F., & Chisti, Y. (2000). Journal of Applied Phycology, 12, 355–368.

    Article  Google Scholar 

  20. Boussiba, S., & Vonshak, A. (1991). Plant & Cell Physiology, 32, 1077–1082.

    CAS  Google Scholar 

  21. Solovchenko, A. E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M. N. (2008). Russian Journal of Plant Physiology, 55, 455–462.

    Article  CAS  Google Scholar 

  22. Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., & Cohen, Z. (2002). Journal of Phycology, 38, 325–331.

    Article  CAS  Google Scholar 

  23. Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R., Hoham, R. W., et al. (1993). Journal of Phycology, 29, 427–434.

    Article  CAS  Google Scholar 

  24. Hagen, C., Braune, W., & Greulich, F. (1993). Journal of Photochemistry and Photobiology B: Biology, 20, 153–160.

    Article  CAS  Google Scholar 

  25. Solovchenko, A., Khozin-Goldberg, I., Cohen, Z., & Merzlyak, M. (2009). Journal of Applied Phycology, 21, 361–366.

    Article  CAS  Google Scholar 

  26. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). The Plant Journal, 54, 621–639.

    Article  CAS  Google Scholar 

  27. Roessler, P. G. (1990). Journal of Phycology, 26, 393–399.

    Article  CAS  Google Scholar 

  28. Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Journal of Biotechnology, 141, 31–41.

    Article  CAS  Google Scholar 

  29. Sydney, E. B., da Silva, T. E., Tokarski, A., Novak, A. C., de Carvalho, J. C., Woiciecohwski, A. L., et al. (2010). Applied Energy, 88, 3291–3294.

    Article  Google Scholar 

  30. Abou-Shanab, R. A. I., Hwang, J., Cho, Y., Min, B., & Jeon, B. (2011). Applied Energy, 88, 3300–3306. doi:10.1016/j.apenergy.2011.01.060.

    Article  CAS  Google Scholar 

  31. Harrington, K. J. (1986). Biomass, 9, 1–17.

    Article  CAS  Google Scholar 

  32. Guihéneuf, F., Mimouni, V., Ulmann, L., & Tremblin, G. (2009). Journal of Experimental Marine Biology and Ecology, 369, 136–143.

    Article  Google Scholar 

  33. Liang, Y., Mai, K., Sun, S., & Yu, D. (2001). Chinese Journal of Oceanology and Limnology, 19, 249–254.

    Article  CAS  Google Scholar 

  34. Kim, M. K., Park, J. W., Park, C. S., Kim, S. J., Jeune, K. H., Chang, M. U., et al. (2007). Bioresource Technology, 98, 2220–2228.

    Article  CAS  Google Scholar 

  35. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2010). Applied Energy, 88, 1–7.

    Google Scholar 

  36. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). Bioresource Technology, 102, 17–25.

    Article  CAS  Google Scholar 

  37. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2010). Applied Energy, 88, 3411–3424. doi:10.1016/j.apenergy.2010.11.025.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by grant KGCX2-YW-374-3 from Chinese Academy of Sciences and grant 2008ZX07422-003-5-2 from the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuli Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Yuan, C., Hu, G. et al. Effects of Light Intensity on the Growth and Lipid Accumulation of Microalga Scenedesmus sp. 11-1 Under Nitrogen Limitation. Appl Biochem Biotechnol 166, 2127–2137 (2012). https://doi.org/10.1007/s12010-012-9639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9639-2

Keywords

Navigation