Skip to main content

Coherent Structures and Flux Coupling

  • Chapter
  • First Online:
Energy and Matter Fluxes of a Spruce Forest Ecosystem

Part of the book series: Ecological Studies ((ECOLSTUD,volume 229))

Abstract

This chapter summarizes the significant findings of the research on coherent structures contributed by investigations conducted at the Waldstein-Weidenbrunnen site from several field campaigns. The description of the quasi-online wavelet detection algorithm and of the coherent flux computation method using a triple decomposition is followed by a presentation of their application to define and diagnose vertical and horizontal couplings in forest canopies. It is demonstrated that these exchange regimes provide physically and biologically meaningful proxies for the communication of air and integration of the spatially separated sinks and sources as a result of the stratified canopy architecture. We continue by presenting two innovative applications of the coherent forest exchange that include the computation of daytime respiration fluxes directly from above-canopy eddy-covariance measurements and the explanation of stationary gradients in the sub-canopy CO2 field causing systematic advection as a result of the spatial heterogeneity of the forest architecture. Advantages and limitations of both are discussed. The chapter concludes by formulating directions for future research and indicating new observational techniques that may have the potential to improve understanding and quantifying the forest coherent exchange.

C. K. Thomas, L. Siebicke, A. Serafimovich, T. Gerken, and T. Foken: Affiliation during the work at the Waldstein sites – University of Bayreuth, Department of Micrometeorology, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids. doi:10.1063/1.2717527

    Google Scholar 

  • Antonia RA, Browne LWB, Bisset DK, Fulachier L (1987) A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds numbers. J Fluid Mech 184:423–444

    Article  Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B et al (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150:655–664

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound Lay Meteorol 108:397–417

    Article  Google Scholar 

  • Bergström H, Högström U (1989) Turbulent exchange above a pine forest. II. Organized structures. Bound Lay Meteorol 49:231–263

    Article  Google Scholar 

  • Brunet Y, Collineau S (1994) Wavelet analysis of diurnal and nocturnal turbulence above a maize canopy. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic Press, San Diego, pp 129–150

    Chapter  Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Technol 7:349–352

    Article  Google Scholar 

  • Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound Lay Meteorol 112:129–157

    Article  Google Scholar 

  • Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Bound Lay Meteorol 107:429–444

    Article  Google Scholar 

  • Collineau S, Brunet Y (1993) Detection of turbulent coherent motions in a forest canopy. Part I: wavelet analysis. Bound Lay Meteorol 65:357–379

    Google Scholar 

  • Eder F, Serafimovich A, Foken T (2013) Coherent structures at a forest edge: properties, coupling and impact of secondary circulations. Bound Lay Meteorol 148:285–308

    Article  Google Scholar 

  • Finnigan JJ (1979) Turbulence in waving wheat. II. Structure of momentum transfer. Bound Lay Meteorol 16:213–236

    Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208

    Google Scholar 

  • Foken T, Meixner FX, Falge E et al (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950. doi:10.5194/acp-12-1923-2012

    Article  CAS  Google Scholar 

  • Gao W, Shaw RH, Paw U KT (1989) Observation of organized structures in turbulent flow within and above a forest canopy. Bound Lay Meteorol 47:349–377

    Article  Google Scholar 

  • Göckede M, Thomas C, Markkanen T et al (2007) Sensitivity of Lagrangian Stochastic footprints to turbulence statistics. Tellus B 59:577–586. doi:10.1111/j.1600-0889.2007.00275.x

    Article  Google Scholar 

  • Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Bound Lay Meteorol 106:147–170

    Article  Google Scholar 

  • Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Bound Lay Meteorol 83:117–137

    Article  Google Scholar 

  • Kallistratova MA, Kouznetsov RD (2004) Systematization of experimental data on forms and scales of coherent structures in the atmosphere. In: 12th international symposium on acoustic remote sensing, Cambridge

    Google Scholar 

  • Kanani-Suhring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: a large-eddy simulation study. Bound Lay Meteorol 155:1–27. doi:10.1007/s10546-014-9986-3

    Article  Google Scholar 

  • Katul G, Goltz SM, Hsieh CI et al (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Bound Lay Meteorol 80:249–282

    Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1994) Wavelet analysis in geophysics: an Introduction. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic Press, San Diego, pp 1–43

    Google Scholar 

  • Lykossov VN, Wamser C (1995) Turbulence intermittency in the atmospheric surface layer over snow-covered sites. Bound Lay Meteorol 72:393–409

    Article  Google Scholar 

  • Paw U KT, Brunet Y, Collineau S et al (1992) Evidence of turbulent coherent structures in and above agricultural plant canopies. Agric For Meteorol 61:55–68

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L et al (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound Lay Meteorol 111:565–587

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound Lay Meteorol 78:351–382

    Article  Google Scholar 

  • Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Bound Lay Meteorol: 39–63. doi:10.1007/s10546-005-9043-3

    Google Scholar 

  • Sayde C, Thomas CK, Wagner J, Selker JS (2015) High-resolution wind speed measurements using actively heated fiber optics. Geophys Res Lett 42:10,064–10,073. doi:10.1002/2015GL066729

    Article  Google Scholar 

  • Scanlon TM, Albertson JD (2001) Turbulent transport of carbon dioxide and water vapor within a vegetation canopy during unstable conditions: identification of episodes using wavelet analysis. J Geophys Res D 106:7251–7262

    Article  CAS  Google Scholar 

  • Serafimovich A, Thomas CK, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound Lay Meteorol 140:429–451. doi:10.1007/s10546-011-9619-z

    Article  Google Scholar 

  • Shaw RH, Brunet Y, Finnigan JJ, Raupach MR (1995) A wind tunnel study of air flow in waving wheat: two-point velocity statistics. Bound Lay Meteorol 76:349–376

    Article  Google Scholar 

  • Shaw RH, Paw U KT, Gao W (1989) Detection of temperature ramps and flow structures at a deciduous forest site. Agric For Meteorol 47:123–138

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the reynolds stress in a canopy layer. J Clim Appl Meteorol 22:1922–1931

    Article  Google Scholar 

  • Siebicke L (2011) Advection at a forest site—an updated approach. PhD Thesis, University of Bayreuth, Bayreuth, 113 pp

    Google Scholar 

  • Siebicke L, Hunner M, Foken T (2012) Aspects of CO2-advection measurements. Theor Appl Climatol 109:109–131

    Article  Google Scholar 

  • Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156. doi:10.1016/j.agrformet.2003.09.011

    Article  Google Scholar 

  • Subke J-A, Buchmann N, Tenhunen JD (2004) Soil CO2 fluxes in spruce forests—temporal and spacial variation, and environmental controls. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing enivironment, a German case study. Ecological studies, vol 172. Springer, Berlin, pp 127–141

    Chapter  Google Scholar 

  • Thomas CK (2011) Variability of subcanopy flow, temperature, and horizontal advection in moderately complex terrain. Bound Lay Meteorol 139:61–81. doi:10.1007/s10546-010-9578-9

    Article  Google Scholar 

  • Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80:91–104. doi:10.1007/s00704-004-0093-0

    Article  Google Scholar 

  • Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound Lay Meteorol 123:317–337. doi:10.1007/s10546-006-9144-7

    Article  Google Scholar 

  • Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound Lay Meteorol 122:123–147. doi:10.1007/s10546-006-9087-z

    Article  Google Scholar 

  • Thomas CK, Kennedy AM, Selker JS et al (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface layer flow. Bound Lay Meteorol 142:177–192. doi:10.1007/s10546-011-9672-7

    Article  Google Scholar 

  • Thomas C, Martin JG, Goeckede M et al (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148:1210–1229. doi:10.1016/J.Agrformet.2008.03.002

    Article  Google Scholar 

  • Thomas CK, Martin JG, Law BE, Davis K (2013) Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. Agric For Meteorol 173:14–27. doi:10.1016/j.agrformet.2013.01.001

    Article  Google Scholar 

  • Thomas C, Mayer J-C, Meixner FX, Foken T (2006) Analysis of low-frequency turbulence above tall vegetation using a Doppler sodar. Bound Lay Meteorol 119:563–587. doi:10.1007/s10546-005-9038-0

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound Lay Meteorol 99:127–150

    Article  Google Scholar 

  • Zeeman MJ, Eugster W, Thomas CK (2013) Concurrency of coherent structures and conditionally sampled daytime sub-canopy respiration. Bound Lay Meteorol 146:1–15. doi:10.1007/s10546-012-9745-2

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396. doi:10.1017/S002211209900467X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph K. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thomas, C.K., Serafimovich, A., Siebicke, L., Gerken, T., Foken, T. (2017). Coherent Structures and Flux Coupling. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_6

Download citation

Publish with us

Policies and ethics