Skip to main content

The Chlorobiaceae, Chloroflexaceae, and Heliobacteriaceae

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

Here we examine the basic biology of three major groups of “green” anoxygenic phototrophic bacteria: the green sulfur bacteria (Chlorobiaceae), the green nonsulfur bacteria (also called the filamentous anoxygenic phototrophs) (Chloroflexaceae), and the heliobacteria (Heliobacteriaceae). Only organisms that have been grown in laboratory culture are considered. Interestingly, the model organisms for each family are thermophiles: the green sulfur bacterium Chlorobaculum tepidum, the filamentous green nonsulfur bacterium Chloroflexus aurantiacus, and the hot spring heliobacterium species, Heliobacterium modesticaldum. All model green bacteria have had their genomes sequenced, and in the green sulfur bacteria, genome sequences of all recognized species have been completed and compared. Although species in each family are distinct from species in each of the other families in many ways, there are key properties that unite two families to the exclusion of the third. These include the presence of chlorosomes in the green sulfur and green nonsulfur bacteria and the structure of the reaction centers in the green sulfur bacteria and heliobacteria. However, the three families of green-colored bacteria are phylogenetically distinct and thus any similarities are likely the result of horizontal gene transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the heliobacteria. Photosynth Res 104:103–111

    Article  CAS  PubMed  Google Scholar 

  • Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 16:585–595

    Article  CAS  PubMed  Google Scholar 

  • Azai C, Harada J, Oh-oka H (2013) Gene expression system in green sulfur bacteria by conjugative plasmid transfer. PLoS One 8, e82345. doi:10.1371/journal.pone.0082345

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockmann H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19

    Article  CAS  Google Scholar 

  • Bryant DA, Costas AMG, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Liu Z, Li T et al (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap RL, Vermaas WFJ (eds) Functional genomics and evolution of photosynthetic systems. Advances in photosynthesis and respiration, vol 33. Springer, New York, pp 47–102

    Chapter  Google Scholar 

  • Castenholz RW, Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 87–103

    Google Scholar 

  • Davenport C, Ussery DW, Tümmler B (2010) Comparative genomics of green sulfur bacteria. Photosynth Res 104:137–152

    Article  CAS  PubMed  Google Scholar 

  • Dillon JG, Fishbain S, Miller SR et al (2007) High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. Appl Environ Microbiol 73:5218–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green sulfur bacterium. Proc Natl Acad Sci U S A 99:9509–9514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A 55(4):928–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkenby LG, Szymanska M, Holkenbrink C et al (2011) Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium. FEMS Microbiol Lett 323:142–150

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Article  CAS  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96–101

    Article  CAS  PubMed  Google Scholar 

  • Gregersen LH, Bryant DA, Frigaard N-U (2011) Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol. doi:10.3389/fmicb.2011.00116

    PubMed  PubMed Central  Google Scholar 

  • Gupta RS, Chander P, George S (2013) Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie van Leeuwenhoek 103:99–119

    Article  PubMed  Google Scholar 

  • Halfen LN, Pierson BK, Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Mikrobiol 82:240–246

    Article  CAS  Google Scholar 

  • Hanada S (2014) The Phylum Chloroflexi, the family Chloroflexaceae, and the related phototrophic families Oscillochloridaceae and Roseiflexaceae. In: Rosenberg E et al (eds), The prokaryotes–other major lineages of bacteria and the archaea, pp 515–532. doi:10.1007/978-3-642-38954-2_165

  • Hanada S, Takaichi S et al (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  CAS  PubMed  Google Scholar 

  • He G, Zhang H, King JD et al (2104) Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry 53:4924–4930

    Google Scholar 

  • Heinnickel M, Golbeck JH (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53

    Article  CAS  PubMed  Google Scholar 

  • Hiras J, Wu YW, Eichorst SA et al (2015) Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deep branching uncultivated lineage. ISME J 10:833–845

    Article  PubMed  PubMed Central  Google Scholar 

  • Iino T, Mori K, Uchino Y et al (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ingavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2014) Biology of green sulfur bacteria. In: eLS. John Wiley & Sons Ltd, Chichester. doi:10.1002/9780470015902.a0000458.pub2

  • Imhoff JF, Thiel V (2010) Taxonomy and phylogeny of Chlorobiaceae. Photosynth Res 104:123–136

    Article  CAS  PubMed  Google Scholar 

  • Kadnikov VV, Mardanov AV, Podosokorskaya OA et al (2013) Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteroidetes/Chlorobi group. PLoS One 8, e53047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kimble LK, Madigan MT (1992) Nitrogen fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158:155–161

    Google Scholar 

  • Kimble LK, Mandelco L, Woese CR et al (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    Article  CAS  Google Scholar 

  • Kimble-Long LK, Madigan MT (2001) Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol Lett 199:191–195

    Article  CAS  PubMed  Google Scholar 

  • Klatt CG, Liu Z, Ludwig M et al (2013) Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J 7:1775–1789. doi:10.1038/ismej.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I et al (1991) Enrichment of bacteriochlorophyll g′ in membranes of Heliobacterium chlorum by ether extraction: unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Itoh S, Matsuoka M, Azai C et al (2015) Menaquinone as the secondary electron acceptor in the type I homodimeric photosynthetic reaction center of Heliobacterium modesticaldum. J Phys Chem B 119:8480–8489

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Muller J, Li T et al (2013) Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum”. Genome Biol 14:R127

    Article  PubMed  PubMed Central  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111

    Google Scholar 

  • Madigan MT (2006) The Family Heliobacteriaceae. Prokaryotes 4:951–964

    Google Scholar 

  • Madigan MT, Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic gliding bacterium. J Bacteriol 122:782–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Jung DO (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Madigan MT, Petersen SR, Brock TD (1974) Nutritional studies on Chloroflexus, a filamentous, photosynthetic gliding bacterium. Arch Microbiol 100:97–103

    Article  CAS  Google Scholar 

  • Madigan MT, Euzéby JP, Asao M (2010) Proposal of Heliobacteriaceae fam. nov. Int J Syst Evol Microbiol 60:1709–1710

    Article  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Bender KS et al (2015) Brock biology of microorganisms, 14th edn. Pearson, San Francisco

    Google Scholar 

  • Manske AK, Glaeser J, Kuypers MMM et al (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 m in the Black Sea. Appl Environ Microbiol 71:8049–8060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 259–278

    Google Scholar 

  • Oh-Oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    Article  CAS  PubMed  Google Scholar 

  • Oh-Oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147

    Article  CAS  PubMed  Google Scholar 

  • Ormerod JG, Kimble LK, Nesbakken T et al (1996) Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: endopore-forming heliobacteria from rice field soils. Arch Microbiol 165:226–234

    Article  CAS  PubMed  Google Scholar 

  • Overmann J (2010) The phototrophic consortium “Chlorochromatium aggregatum”--a model for bacterial heterologous multicellularity. In: Hallenbeck PC (ed) Recent advances in phototrophic prokaryotes. Springer, Berlin, pp 15–29

    Chapter  Google Scholar 

  • Pfennig N (1967) Photosynthetic bacteria. Ann Rev Microbiol 21:285–324

    Article  CAS  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs, pp 31–47. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht, pp 1–15

    Google Scholar 

  • Podosokorskaya OA, Kadnikov VV, Gavrilov SN et al (2013) Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol. doi:10.1111/1462–2920.12067

  • Psencík J, Collins AM, Liljeroos L et al (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708

    Article  PubMed  PubMed Central  Google Scholar 

  • Revsbech NP, Ward DM (1984) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48:270–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarrou I, Khan Z, Cowgill J et al (2012) Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. Photosynth Res 111:291–302

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104:113–122

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Madigan MT (2014) The Family Heliobacteriaceae. In: Rosenberg E et al (eds) The prokaryotes–Firmicutes and Tenericutes. Springer, Dordrecht, pp 185–196. doi:10.1007/9783-642-30120-9_362

  • Sattley WM, Swingley WD (2013) Properties and evolutionary implications of the heliobacterial genome. In: Beatty JT (ed) Genome evolution of photosynthetic bacteria. Advances in botanical research, vol 66. Academic Press Elsevier, Amsterdam, pp 67–97

    Chapter  Google Scholar 

  • Sattley WM, Madigan MT, Swingley WD et al (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190:4687–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattley WM, Asao M, Tang KH et al (2014) Energy conservation in heliobacteria: photosynthesis and central carbon metabolism. In: Hohmann-Marriott MF (ed) The structural basis of biological energy generation. Advances in photosynthesis and respiration, vol 39. Springer, Dordrecht, pp 231–247

    Chapter  Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR et al (1997) Characterization of new heliobacteria and their habitats. Photosynth Res 53:1–12

    Article  CAS  Google Scholar 

  • Takaichi S, Inoue K, Akaike M et al (1997a) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Wang ZY, Umetsu M et al (1997b) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′2′-didehydro-γ-carotene, 1′2′-dihydro-chlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains. Arch Microbiol 168:270–276

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Maoka T, Yamada M et al (2001) Absence of carotenes and presence of a tertiary methoxy group in a carotenoid from a thermophilic filamentous photosynthetic bacterium Roseiflexus castenholzii. Plant Cell Physiol 42:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Oh-Oka H, Maoka T et al (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100

    Article  CAS  PubMed  Google Scholar 

  • Tang K-H, Barry K, Chertkov O et al (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tank M, Bryant DA (2015) Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium Chloroacidobacterium thermophilum. Front Microbiol. doi:10.3389/fmicb.2015.00226

  • Thiel V, Hamilton TL, Tomsho LP et al (2014) Draft genome sequence of a sulfide-oxidizing, autotrophic filamentous anoxygenic phototrophic bacterium, Chloroflexus sp. strain MS-G (Chloroflexi). Genome Announc 2:e0087214. doi:10.1128/genomeA.00872-14

  • Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG (1976) Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding filamentous phototrophic ‘green’ bacteria. Int J Syst Bacteriol 26:74–75

    Article  Google Scholar 

  • Trüper HG, Pfennig N (1992) The family Chlorobiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn, A handbook on the biology of bacteria. Ecophysiology, isolation, identification, applications. Springer, New York, pp 3583–3592

    Chapter  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C et al (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

  • van der Meer MTJ, Klatt C, Wood J et al (2010) Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 192:3033–3042

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85

    Chapter  Google Scholar 

  • Visscher PT, Prins R, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Lett 86:283–293

    Article  CAS  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR et al (2006) Chlorobium chlorochromatii sp nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium ‘Chlorochromatium aggregatum’. Arch Microbiol 185:363–372

    Article  CAS  PubMed  Google Scholar 

  • Wahlund TM, Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177:81–90

    Article  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW et al (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    Article  CAS  Google Scholar 

  • Zarzycki J, Brecht V, Muller M et al (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci U S A 106:21317–21322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MTM acknowledges current support from the NASA Exobiology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Madigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Madigan, M.T., Schaaf, N.A.V., Sattley, W.M. (2017). The Chlorobiaceae, Chloroflexaceae, and Heliobacteriaceae . In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_4

Download citation

Publish with us

Policies and ethics