Skip to main content

Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

Heliobacteria are a group of anoxygenic phototrophic bacteria that use a unique pigment, bacteriochlorophyll g, for photosynthetic energy conversion within a type I homodimeric reaction center. Like their nonphotosynthetic relatives the clostridia, heliobacteria have a gram-positive cell structure and can form heat-resistant endospores. Heliobacteria are also unusual in that they are the only anaerobic anoxygenic phototrophs that lack a mechanism for autotrophic growth. Growth of heliobacteria is therefore dependent upon the presence of usable organic carbon sources and occurs either photoheterotrophically or chemotrophically (via pyruvate fermentation). While knowledge of heliobacterial photosynthesis and physiology has steadily increased since the relatively recent discovery of these phototrophs in the 1980s, high-resolution structural data pertaining to features of the heliobacterial photosynthetic apparatus are not yet available. This chapter summarizes our current understanding of energy conservation in heliobacteria as it relates to central carbon metabolism (in both light and dark conditions), electron transport, and light harvesting and photochemistry within the reaction center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A0 :

– Chlorophyll acting as an electron carrier within a reaction center;

A1 :

– Quinone acting as an electron carrier within a reaction center;

ATP:

– –Adenosine triphosphate;

BChl:

– –Bacteriochlorophyll;

Chl:

– Chlorophyll;

CoA:

– Coenzyme A;

ED pathway:

– –Entner-Doudoroff pathway;

EMP pathway:

– Embden-Meyerhof-Parnas pathway;

FeS-type RC:

– –Reaction center where iron-sulfur clusters are the terminal electron carriers;

FX FA, FB :

– Iron-sulfur electron carrier;

GSB:

– Green sulfur bacteria;

KDH:

– α-ketoglutarate dehydrogenase;

OTCA cycle:

– Oxidative or forward tricarboxylic acid cycle;

P800 :

– Primary electron donor in the heliobacterial RC;

PEPCK:

– Phosphoenolpyruvate carboxykinase;

PFOR:

– Pyruvate:ferredoxin oxidoreductase;

PSI:

– Photosystem I;

Q-type RC:

– Reaction center where quinones are the terminal electron acceptors;

RC:

– Reaction center;

RTCA cycle:

– Reductive or reverse tricarboxylic acid cycle;

TCA cycle:

– Tricarboxylic acid cycle

References

  • Amesz J (1995a) The antenna-reaction center complex of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE, Amesz J (eds) Anoxygenic photosynthetic bacteria, vol 2. Kluwer Academic Publishers, Dordrecht, pp 687–697, Advances in Photosynthesis and Respiration

    Google Scholar 

  • Amesz J (1995b) The heliobacteria, a new group of photosynthetic bacteria. J Photochem Photobiol B Biol 30:89–96

    Article  CAS  Google Scholar 

  • Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the heliobacteria. In: Golbeck J (ed) Photosynthetic phototrophs with homodimeric type-I reaction centers. Photosynth Res 104:103–111

    Google Scholar 

  • Asao M, Jung DO, Achenbach LA, Madigan MT (2006) Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 10:403–410

    Article  CAS  PubMed  Google Scholar 

  • Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 16:585–595

    Article  CAS  PubMed  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373

    Article  CAS  Google Scholar 

  • Brettel K, Leibl W, Liebl U (1998) Electron transfer in the heliobacterial reaction center: evidence against a quinone-type electron acceptor functioning analogous to A1 in photosystem I. Biochim Biophys Acta 1363:175–181

    Article  CAS  PubMed  Google Scholar 

  • Brockmann H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19

    Article  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA, Madigan MT (1999) Heliorestis daurensis, gen. nov. sp.nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a siberian soda lake. Arch Microbiol 172:167–174

    Article  CAS  PubMed  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174:283–291

    Article  CAS  PubMed  Google Scholar 

  • Collins AM, Redding KE, Blankenship RE (2010) Modulation of fluorescence in Heliobacterium modesticaldum cells. In: Golbeck J (ed) Photosynthetic phototrophs with homodimeric type-I reaction centers. Photosynth Res 104:283–292

    Google Scholar 

  • Evans MC, Buchanan BB, Arnon DI (1966a) New cyclic process for carbon assimilation by a photosynthetic bacterium. Science 152:673

    Article  CAS  PubMed  Google Scholar 

  • Evans MC, Buchanan BB, Arnon DI (1966b) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A 55:928–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP-Phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Feng X, Tang KH, Blankenship RE, Tang YJ (2010) Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. J Biol Chem 285:39544–39550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349

    Article  CAS  Google Scholar 

  • Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  CAS  PubMed  Google Scholar 

  • Heinnickel M, Golbeck J (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53

    Article  CAS  PubMed  Google Scholar 

  • Heinnickel M, Agalarov R, Svensen N, Krebs C, Golbeck JH (2006) Identification of FX in the heliobacterial reaction center as a [4Fe–4S] cluster with an S = 3/2 ground spin state. Biochemistry 45:6756–6764

    Article  CAS  PubMed  Google Scholar 

  • Heinnickel M, Shen G, Golbeck JH (2007) Identification and characterization of PshB, the dicluster ferredoxin that harbors the terminal electron acceptors FA and FB in Heliobacterium modesticaldum. Biochemistry 46:2530–2536

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A (1989) Occurrence of menaquinone as the sole isoprenoid quinone in the photosynthetic bacterium Heliobacterium chlorum. Arch Microbiol 151:378–379

    Article  CAS  Google Scholar 

  • Hügler M, Sievert SM (2011) Beyond the calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci 3:261–289

    Article  Google Scholar 

  • Jahn U, Huber H, Eisenreich W, Hugler M, Fuchs G (2007) Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J Bacteriol 189:4108–4119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ke B (1973) The primary electron acceptor of photosystem I. Biochim Biophys Acta 301:1–33

    Article  CAS  PubMed  Google Scholar 

  • Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    Article  CAS  Google Scholar 

  • Kleinherenbrink FAM, Ikegami I, Hiraishi A, Otte SCM, Amesz J (1993) Electron transfer in menaquinone-depleted membranes of Heliobacterium chlorum. Biochim Biophys Acta 1142:69–73

    Article  CAS  Google Scholar 

  • Kleinherenbrink FAM, Chiou H-C, LoBrutto R, Blankenship RE (1994) Spectroscopic evidence for the presence of an iron-sulfur center similar to FX of Photosystem I Heliobacillus mobilis. Photosynth Res 41:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, van de Meent EJ, Erkelens C, Amesz J, Ikegami I, Watanabe T (1991a) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991b) Enrichment of bacteriochlorophyll g’ in membranes of Heliobacterium chlorum by ether extraction: unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-oka H, Amesz J, Yamamura M, Kise H (1998) Light-independent isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Anal Chim Acta 365:199–203

    Article  CAS  Google Scholar 

  • Kramer DM, Schoepp B, Liebl U, Nitschke W (1997) Cyclic electron transfer in Heliobacillus mobilis involving a menaquinol-oxidizing cytochrome bc complex and an RCI-type reaction center. Biochemistry 36:4203–4211

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li F, Hagemeier CH, Seedorf H, Gottschalk G, Thauer RK (2007) Re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to Si-citrate synthase. J Bacteriol 189:4299–4304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE, Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci U S A 90:7124–7128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin S, Chiou HC, Kleinherenbrink FA, Blankenship RE (1994) Time-resolved spectroscopy of energy and electron transfer processes in the photosynthetic bacterium Heliobacillus mobilis. Biophys J 66:437–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin S, Chiou HC, Blankenship RE (1995) Secondary electron transfer processes in membranes of Heliobacillus mobilis. Biochemistry 34:12761–12767

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT (2001) Heliobacteriaceae. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 625–630

    Chapter  Google Scholar 

  • Madigan MT (2006) The family Heliobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 4, 3rd edn. Springer, New York, pp 951–964

    Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g: properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci U S A 84:2570–2574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto R, Iwaki M, Mino H, Harada J, Itoh S, Oh-oka H (2006) ESR signal of the iron-sulfur center FX and its function in the homodimeric reaction center of Heliobacterium modesticaldum. Biochemistry 45:6306–6316

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto R, Mino H, Kondo T, Itoh S, Oh-oka H (2008) An electron spin-polarized signal of the P800 + A1 (Q)- state in the homodimeric reaction center core complex of Heliobacterium modesticaldum. Biochemistry 47:4386–4393

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Oh-oka H, Tamiaki H (2005) Determination of stereochemistry of bacteriochlorophyll g F and 81-hydroxy-chlorophyll a F from Heliobacterium modesticaldum. Photochem Photobiol 81:666–673

    Article  CAS  PubMed  Google Scholar 

  • Neerken S, Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507:278–290

    Article  CAS  PubMed  Google Scholar 

  • Nitschke W, Setif P, Liebl U, Feiler U, Rutherford AW (1990) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29:11079–11088

    Article  CAS  PubMed  Google Scholar 

  • Nuijs AM, Dorssen RJ, Duysens LNM, Amesz J (1985) Excited states and primary photochemical reactions in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci U S A 82:6865–6868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oelze J (1985) Analysis of bacteriochlorophylls. Meth Microbiol 18:257–284

    Article  CAS  Google Scholar 

  • Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M (2010) An overview on chlorophylls and quinones in the photosystem I-type reaction centers. Photosynth Res 104:305–319

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147

    Article  CAS  PubMed  Google Scholar 

  • Ormerod J, Nesbakken T, Torgerson Y (1990) Phototrophic bacteria that form heat-resistant endospores. In: Baltscheffsky M (ed) Current research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 935–938

    Google Scholar 

  • Overmann J (2006) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7, 3rd edn. Springer, New York, pp 359–378

    Google Scholar 

  • Pickett MW, Williamson MP, Kelly DJ (1994) An enzyme and 13C-NMR of carbon metabolism in heliobacteria. Photosynth Res 41:75–88

    Article  CAS  PubMed  Google Scholar 

  • Pingitore F, Tang Y, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79:2483–2490

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Gest H, Blankenship RE (1985) Thermodynamic properties of the photochemical reaction center of Heliobacterium chlorum. Biochim Biophys Acta 810:377–384

    Article  CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394

    Article  Google Scholar 

  • Romberger S, Golbeck J (2010) The bound iron–sulfur clusters of Type-I homodimeric reaction centers. Photosynth Res 104:333–346

    Article  CAS  PubMed  Google Scholar 

  • Romberger S, Castro C, Sun Y, Golbeck J (2010) Identification and characterization of PshBII, a second FA/FB-containing polypeptide in the photosynthetic reaction center of Heliobacterium modesticaldum. Photosynth Res 104:293–303

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Chen M, Blankenship RE, Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190:4687–4696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104:113–122

    Article  CAS  PubMed  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls, vol 25. Springer, The Netherlands, pp 1–26, Advances in Photosynthesis and Respiration

    Chapter  Google Scholar 

  • Sirevåg R (1995) Carbon metabolism in green bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Amsterdam, pp 871–883

    Google Scholar 

  • Sirevåg R, Ormerod JG (1970) Carbon dioxide—fixation in photosynthetic green sulfur bacteria. Science 169:186–188

    Article  PubMed  Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new phototrophic heliobacteria and their habitats. Photosynth Res 53:1–11

    Article  CAS  Google Scholar 

  • Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-Oka H, Madigan MT (1997) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100

    CAS  PubMed  Google Scholar 

  • Tang KH, Blankenship RE (2010) Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 285:35848–35854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang YJ, Yi S, Zhuang WQ, Zinder SH, Keasling JD, Alvarez-Cohen L (2009) Investigation of carbon metabolism in “Dehalococcoides ethenogenes” strain 195 by use of isotopomer and transcriptomic analyses. J Bacteriol 191:5224–5231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang KH, Feng X, Zhuang WQ, Alvarez-Cohen L, Blankenship RE, Tang YJ (2010a) Carbon flow of heliobacteria is related more to clostridia than to the green sulfur bacteria. J Biol Chem 285:35104–35112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang KH, Yue H, Blankenship RE (2010b) Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 10:150

    Article  PubMed Central  PubMed  Google Scholar 

  • Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904

    Article  CAS  PubMed  Google Scholar 

  • Trost JT, Brune DC, Blankenship RE (1992) Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I. Photosynth Res 32:11–22

    Article  CAS  Google Scholar 

  • van de Meent EJ, Kleinherenbrink FAM, Amesz J (1990) Purification and properties of an antenna-reaction center complex from heliobacteria. Biochim Biophys Acta 1015:223–230

    Article  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

  • van Dorssen RJ, Vasmel H, Amesz J (1985) Antenna organization and energy transfer in membranes of Heliobacterium chlorum. Biochim Biophys Acta 809:199–203

    Article  Google Scholar 

  • Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci U S A 95:14851–14856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Robert Blankenship and Michael Madigan for helpful comments and discussions during the preparation of the manuscript and Ann Sattley for assistance in preparing some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Matthew Sattley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sattley, W.M., Asao, M., Tang, J.KH., Collins, A.M. (2014). Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_13

Download citation

Publish with us

Policies and ethics