Skip to main content

Cell–Cell Contacts in Melanoma and the Tumor Microenvironment

  • Chapter
  • First Online:
Melanoma Development
  • 1060 Accesses

Abstract

Cell-contacts are essential for intercellular communication and are involved in proliferation, differentiation, and homeostasis. Melanocytes establish multiple contacts with keratinocytes, which in turn control melanocyte growth and expression of cell surface receptors. Most melanoma arise within the epidermis (melanoma in situ) and then invade across the basement membrane. These melanoma cells escape from control by keratinocytes through five major mechanisms: (1) downregulation of receptors important for communication with keratinocytes such as E-cadherin, P-cadherin, desmoglein, and connexins; (2) upregulation of receptors and signaling molecules important for interactions between melanoma cells and other melanoma cells, fibroblasts, or endothelial cells, such as N-cadherin, Mel-CAM, and zonula occludens protein-1 (ZO-1); (3) deregulation of morphogens such as Notch receptors and their ligands; (4) loss of anchorage to the basement membrane due to altered expression of cell–matrix adhesion molecules; (5) increased expression of metalloproteinases.

Melanoma depends on, interacts with and reacts to its stroma, including extracellular matrix, growth factors, cytokines, fibroblasts, endothelial cells, and immune cells. In turn, melanoma is known to produce factors that influence its environment, and may force it to alter cell–cell communication.

In this chapter, we describe the alterations in cell–cell contacts in melanoma and the tumor microenvironment associated with melanoma development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDH:

Cadherin

Cx:

Connexin(s)

Dsc 1–3:

Desmocollin

Dsg:

Desmoglein

GJ:

Gap junction

GJIC:

Gap junctional intercellular communication

References

  • Aeed PA, Nakajima M, Welch DR (1988) The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. Int J Cancer 42(5):748–759

    Article  CAS  PubMed  Google Scholar 

  • Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764

    CAS  PubMed  Google Scholar 

  • Alexaki VI, Javelaud D, Van Kempen LC, Mohammad KS, Dennler S, Luciani F, Hoek KS, Juarez P, Goydos JS, Fournier PJ, Sibon C, Bertolotto C, Verrecchia F, Saule S, Delmas V, Ballotti R, Larue L, Saiag P, Guise TA, Mauviel A (2010) GLI2-mediated melanoma invasion and metastasis. J Natl Cancer Inst 102:1148–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson MM, Menko AS, Johnson RG, Sheppard JR, Sheridan JD (1981) Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus. J Cell Biol 91(2 Pt 1):573–578

    Article  CAS  PubMed  Google Scholar 

  • Avanzo JL, Mesnil M, Hernandez-Blazquez FJ, Mackowiak II, Mori CM, da Silva TC, Oloris SC, Garate AP, Massironi SM, Yamasaki H, Dagli ML (2004) Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis 25(10):1973–1982. doi:10.1093/carcin/bgh193bgh193 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA (2005) Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res 11:8606–8614

    Article  CAS  PubMed  Google Scholar 

  • Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM, Atkins MB, Thompson JA, Coit DG, Byrd D, Desmond R, Zhang Y, Liu PY, Lyman GH, Morabito A (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19(16):3622–3634

    CAS  PubMed  Google Scholar 

  • Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL (2013) Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS One 8(2):e56744. doi:10.1371/journal.pone.0056744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates DC, Sin WC, Aftab Q, Naus CC (2007) Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55(15):1554–1564. doi:10.1002/glia.20569

    Article  PubMed  Google Scholar 

  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Bosserhoff AK (2006) Functional implication of truncated P-cadherin expression in malignant melanoma. Exp Mol Pathol 81:224–230

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Hein R, Bosserhoff AK (2005) A secreted form of P-cadherin is expressed in malignant melanoma. Exp Cell Res 305:418–426

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Wild PJ, Meyer S, Bataille F, Pauer A, Klinkhammer-Schalke M, Hofstaedter F, Bosserhoff AK (2006) Prognostic relevance of P-cadherin expression in melanocytic skin tumours analysed by high-throughput tissue microarrays. J Clin Pathol 59:699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JC, Termeer C, Schmidt RE, Brocker EB (1993) Soluble intercellular adhesion molecule-1 inhibits MHC-restricted specific T cell/tumor interaction. J Immunol 151(12):7224–7232

    CAS  PubMed  Google Scholar 

  • Berrier AL, Yamada KM (2007) Cell-matrix adhesion. J Cell Physiol 213:565–573

    Article  CAS  PubMed  Google Scholar 

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billion K, Ibrahim H, Mauch C, Niessen CM (2006) Increased soluble E-cadherin in melanoma patients. Skin Pharmacol Physiol 19:65–70

    Article  CAS  PubMed  Google Scholar 

  • Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116(Pt 3):499–511

    Article  PubMed  CAS  Google Scholar 

  • Boveri T (1914) Zur frage der entstehung maligner tumoren. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Brandner JM, Haass NK (2013) Melanoma’s connections to the tumour microenvironment. Pathology 45(5):443–452. doi:10.1097/PAT.0b013e328363b3bd

    Article  CAS  PubMed  Google Scholar 

  • Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I (2002) Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81(5):253–263

    Article  CAS  PubMed  Google Scholar 

  • Brandner JM, McIntyre M, Kief S, Wladykowski E, Moll I (2003) Expression and localization of tight junction-associated proteins in human hair follicles. Arch Dermatol Res 295(5):211–221

    Article  CAS  PubMed  Google Scholar 

  • Braga V (2000) Epithelial cell shape: cadherins and small GTPases. Exp Cell Res 261:83–90

    Article  CAS  PubMed  Google Scholar 

  • Braga VM, Machesky LM, Hall A, Hotchin NA (1997) The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137:1421–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brissette JL, Kumar NM, Gilula NB, Hall JE, Dotto GP (1994) Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci U S A 91(14):6453–6457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer J, Ebrahimnejad A, Flayeh R, Schumacher U, Loning T, Bamberger AM, Wagener C (2001) cis Interaction of the cell adhesion molecule CEACAM1 with integrin beta(3). Am J Pathol 159(2):537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, Saldanha G, Osborne J, Hutchinson P, Tse G, Lachuer J, Puisieux A, Pringle JH, Ansieau S, Tulchinsky E (2013) A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 24:466–480

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar A, Bera AK (2012) Hemichannels: permeants and their effect on development, physiology and death. Cell Biochem Funct 30(2):89–100. doi:10.1002/cbf.2794

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Gleeson LM, McKinnon T, Lala PK (2002) Regulation of human trophoblast migration and invasiveness. Can J Physiol Pharmacol 80:116–124

    Article  CAS  PubMed  Google Scholar 

  • Cohn ML, Goncharuk VN, Diwan AH, Zhang PS, Shen SS, Prieto VG (2005) Loss of claudin-1 expression in tumor-associated vessels correlates with acquisition of metastatic phenotype in melanocytic neoplasms. J Cutan Pathol 32(8):533–536, CUP324 [pii]10.1111/j.0303-6987.2005.00324.x

    Article  PubMed  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc fingerprotein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278

    Article  CAS  PubMed  Google Scholar 

  • Cotrina ML, Lin JH, Nedergaard M (2008) Adhesive properties of connexin hemichannels. Glia 56(16):1791–1798. doi:10.1002/glia.20728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11(2):323–338. doi:10.1089/ars.2008.2153

    Article  CAS  PubMed  Google Scholar 

  • Czyz J (2008) The stage-specific function of gap junctions during tumourigenesis. Cell Mol Biol Lett 13(1):92–102. doi:10.2478/s11658-007-0039-5

    Article  CAS  PubMed  Google Scholar 

  • Dai DL, Makretsov N, Campos EI, Huang C, Zhou Y, Huntsman D, Martinka M, Li G (2003) Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival. Clin Cancer Res 9:4409–4414

    CAS  PubMed  Google Scholar 

  • Danen EH, Sonnenberg A (2003) Integrins in regulation of tissue development and function. J Pathol 201:632–641

    Article  CAS  PubMed  Google Scholar 

  • Danen EH, Jansen KF, Van Kraats AA, Cornelissen IM, Ruiter DJ, van Muijen GN (1995) Alpha v-integrins in human melanoma: gain of alpha v beta 3 and loss of alpha v beta 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int J Cancer 61:491–496

    Article  CAS  PubMed  Google Scholar 

  • Danen EH, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GN (1996) E-cadherin expression in human melanoma. Melanoma Res 6:127–131

    Article  CAS  PubMed  Google Scholar 

  • Dagli ML, Yamasaki H, Krutovskikh V, Omori Y (2004) Delayed liver regeneration and increased susceptibility to chemical hepatocarcinogenesis in transgenic mice expressing a dominant-negative mutant of connexin32 only in the liver. Carcinogenesis 25(4):483–492. doi:10.1093/carcin/bgh050bgh050 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A 95:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degen WG, van Kempen LC, Gijzen EG, van Groningen JJ, van Kooyk Y, Bloemers HP, Swart GW (1998) MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am J Pathol 152(3):805–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di WL, Rugg EL, Leigh IM, Kelsell DP (2001) Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117(4):958–964

    Article  CAS  PubMed  Google Scholar 

  • Djalilian AR, McGaughey D, Patel S, Seo EY, Yang C, Cheng J, Tomic M, Sinha S, Ishida-Yamamoto A, Segre JA (2006) Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 116(5):1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrowolski R, Sasse P, Schrickel JW, Watkins M, Kim JS, Rackauskas M, Troatz C, Ghanem A, Tiemann K, Degen J, Bukauskas FF, Civitelli R, Lewalter T, Fleischmann BK, Willecke K (2008) The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Hum Mol Genet 17(4):539–554. doi:10.1093/hmg/ddm329

    Article  CAS  PubMed  Google Scholar 

  • Donizy P, Zietek M, Halon A, Leskiewicz M, Kozyra C, Matkowski R (2015) Prognostic significance of ALCAM (CD166/MEMD) expression in cutaneous melanoma patients. Diagn Pathol 10:86. doi:10.1186/s13000-015-0331-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duflot-Dancer A, Mesnil M, Yamasaki H (1997) Dominant-negative abrogation of connexin-mediated cell growth control by mutant connexin genes. Oncogene 15(18):2151–2158. doi:10.1038/sj.onc.1201393

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimnejad A, Streichert T, Nollau P, Horst AK, Wagener C, Bamberger AM, Brummer J (2004) CEACAM1 enhances invasion and migration of melanocytic and melanoma cells. Am J Pathol 165(5):1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385

    Article  CAS  PubMed  Google Scholar 

  • Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC (1991) Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci U S A 88(23):10701–10705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Sabban ME, Pauli BU (1991) Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J Cell Biol 115(5):1375–1382

    Article  CAS  PubMed  Google Scholar 

  • el-Sabban ME, Pauli BU (1994) Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion Metastasis 14(1–6):164–176

    CAS  PubMed  Google Scholar 

  • Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129(3):805–817

    Article  CAS  PubMed  Google Scholar 

  • Elzarrad MK, Haroon A, Willecke K, Dobrowolski R, Gillespie MN, Al-Mehdi AB (2008) Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 6:20. doi:10.1186/1741-7015-6-20, 1741-7015-6-20 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezumi K, Yamamoto H, Murata K, Higashiyama M, Damdinsuren B, Nakamura Y, Kyo N, Okami J, Ngan CY, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Nojima H, Monden M (2008) Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer. Clin Cancer Res 14(3):677–684. doi:10.1158/1078-0432.CCR-07-1184

    Article  CAS  PubMed  Google Scholar 

  • Felding-Habermann B, Fransvea E, O’Toole TE, Manzuk L, Faha B, Hensler M (2002) Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells. Clin Exp Metastasis 19:427–436

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458. doi:10.1038/nrc1098

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick TB, Breathnach AS (1963) The epidermal melanin unit system. Dermatol Wochenschr 147:481–489

    CAS  PubMed  Google Scholar 

  • Fitzpatrick TB, Szabo G, Seiji M, Quevedo WC Jr (1979) Biology of the melanin pigmentary system. In: Fitzpatrick TB, Eisen A, Wolff K, Freedberg I, Austen K (eds) Dermatology in general medicine. McGraw-Hill, New York, pp 131–145

    Google Scholar 

  • Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, Prat A, Chow S, Li L, Vandevert C, Zago W, Lorenzana C, Nishioka C, Hoffman J, Botelho R, Willits C, Tanaka K, Johnston J, Yednock T (2012) Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One 7(7):e40443. doi:10.1371/journal.pone.0040443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu-Dahi A, Tilgen W, Reichrath J, Georg T, Altevogt P, Gutwein P (2003) L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett 189(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Franke WW (2009) Discovering the molecular components of intercellular junctions – a historical view. Cold Spring Harb Perspect Biol 1:a003061

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedl P, Zanker KS, Brocker EB (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43:369–378

    Article  CAS  PubMed  Google Scholar 

  • Friedmann MC, Migone TS, Russell SM, Leonard WJ (1996) Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci U S A 93:2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156(6):1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa F, Fujii K, Horiguchi Y, Matsuyoshi N, Fujita M, Toda K, Imamura S, Wakita H, Shirahama S, Takigawa M (1997) Roles of E- and P-cadherin in the human skin. Microsc Res Tech 38:343–352

    Article  CAS  PubMed  Google Scholar 

  • Gershon E, Plaks V, Dekel N (2008) Gap junctions in the ovary: expression, localization and function. Mol Cell Endocrinol 282(1–2):18–25. doi:10.1016/j.mce.2007.11.001, S0303-7207(07)00411-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Giavazzi R, Chirivi RG, Garofalo A, Rambaldi A, Hemingway I, Pigott R, Gearing AJ (1992) Soluble intercellular adhesion molecule 1 is released by human melanoma cells and is associated with tumor growth in nude mice. Cancer Res 52(9):2628–2630

    CAS  PubMed  Google Scholar 

  • Goldberg GS, Valiunas V, Brink PR (2004) Selective permeability of gap junction channels. Biochim Biophys Acta 1662(1–2):96–101. doi:10.1016/j.bbamem.2003.11.022

    Article  CAS  PubMed  Google Scholar 

  • Gottardi CJ, Wong E, Gumbiner BM (2001) E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153:1049–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotoh N, Toyoda M, Shibuya M (1997) Tyrosine phosphorylation sites at amino acids 239 and 240 of Shc are involved in epidermal growth factor-induced mitogenic signaling that is distinct from Ras/mitogen-activated protein kinase activation. Mol Cell Biol 17:1824–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graff JR, Greenberg VE, Herman JG, Westra WH, Boghaert ER, Ain KB, Saji M, Zeiger MA, Zimmer SG, Baylin SB (1998) Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res 58:2063–2066

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  • Groebe K, Mueller-Klieser W (1991) Distributions of oxygen, nutrient, and metabolic waste concentrations in multicellular spheroids and their dependence on spheroid parameters. Eur Biophys J 19(4):169–181

    Article  CAS  PubMed  Google Scholar 

  • Haass NK (2015) Dynamic tumor heterogeneity in melanoma therapy: how do we address this in a novel model system? Melanoma Manag 2(2):93–95

    Article  Google Scholar 

  • Haass NK, Beaumont KA, Hill DS, Anfosso A, Mrass P, Munoz MA, Kinjyo I, Weninger W (2014) Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell Melanoma Res 27(5):764–776. doi:10.1111/pcmr.12274

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Houdek P, Brandner JM, Moll I (2003a) Expression patterns of connexins in Merkel cell carcinoma and adjacent epidermis. In: Baumann KI, Moll I, Halata Z (eds) The Merkel cell – structure – development – function – and cancerogenesis. Springer, Berlin/Heidelberg/New York/Tokyo, pp 219–222

    Google Scholar 

  • Haass NK, Houdek P, Wladykowski E, Moll I, Brandner JM (2003b) Expression patterns of tight junction proteins in Merkel cell carcinoma. In: Baumann KI, Moll I, Halata Z (eds) The Merkel cell – structure – development – function – and cancerogenesis. Springer, Berlin/Heidelberg/New York/Tokyo, pp 223–226

    Google Scholar 

  • Haass NK, Ripperger D, Wladykowski E, Dawson P, Gimotty PA, Blome C, Fischer F, Schmage P, Moll I, Brandner JM (2010) Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem Cell Biol 133(1):113–124. doi:10.1007/s00418-009-0654-5

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS (2009) Melanoma biomarkers: current status and utility in diagnosis, prognosis, and response to therapy. Mol Diagn Ther 13(5):283–296. doi:10.2165/11317270-000000000-00000, 2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS, Herlyn M (2004) The role of altered cell-cell communication in melanoma progression. J Mol Histol 35(3):309–318

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18(3):150–159

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Wladykowski E, Kief S, Moll I, Brandner JM (2006) Differential induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. J Histochem Cytochem 54(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hamamura K, Tsuji M, Ohkawa Y, Nakashima H, Miyazaki S, Urano T, Yamamoto N, Ueda M, Furukawa K, Furukawa K (2008) Focal adhesion kinase as well as p130Cas and paxillin is crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Biochim Biophys Acta 1780:513–519

    Article  CAS  PubMed  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62(6):1613–1618

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A 98:8018–8023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Molecular plasticity of human melanoma cells. Oncogene 22:3070–3075

    Article  CAS  PubMed  Google Scholar 

  • Hellmann P, Grummer R, Schirrmacher K, Rook M, Traub O, Winterhager E (1999) Transfection with different connexin genes alters growth and differentiation of human choriocarcinoma cells. Exp Cell Res 246(2):480–490. doi:10.1006/excr.1998.4332, S0014-4827(98)94332-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Herve JC, Bourmeyster N, Sarrouilhe D, Duffy HS (2007) Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94(1–2):29–65. doi:10.1016/j.pbiomolbio.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, Xu CE, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ 7(7):861–870

    CAS  PubMed  Google Scholar 

  • Hong H, Stastny M, Brown C, Chang WC, Ostberg JR, Forman SJ, Jensen MC (2014) Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes. J Immunother 37(2):93–104. doi:10.1097/CJI.0000000000000018

    Article  CAS  PubMed  Google Scholar 

  • Hortsch M (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17(4):587–593

    Article  CAS  PubMed  Google Scholar 

  • Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ (2001) Coordinately up-regulated genes in ovarian cancer. Cancer Res 61(10):3869–3876

    CAS  PubMed  Google Scholar 

  • Howe AK, Aplin AE, Juliano RL (2002) Anchorage-dependent ERK signaling – mechanisms and consequences. Curr Opin Genet Dev 12:30–35

    Article  CAS  PubMed  Google Scholar 

  • Hsu MY, Wheelock MJ, Johnson KR, Herlyn M (1996) Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc 1:188–194

    CAS  PubMed  Google Scholar 

  • Hsu M, Andl T, Li G, Meinkoth JL, Herlyn M (2000) Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 113(Pt 9):1535–1542

    CAS  PubMed  Google Scholar 

  • Huang RP, Hossain MZ, Sehgal A, Boynton AL (1999) Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70(1):21–24. doi:10.1002/(SICI)1096-9098(199901)70:1<21::AID-JSO4>3.0.CO;2–0, [pii]#

    Article  CAS  PubMed  Google Scholar 

  • Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67:7972–7976

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Katoh F, Kataoka TR, Okada M, Tsubota N, Asada H, Yoshikawa K, Maeda S, Kitamura Y, Yamasaki H, Nojima H (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 105(9):1189–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs K, Feys L, Vanhoecke B, Van Marck V, Bracke M (2011) P-cadherin expression reduces melanoma growth, invasion, and responsiveness to growth factors in nude mice. Eur J Cancer Prev 20(3):207–216

    Article  CAS  PubMed  Google Scholar 

  • Jimbow K, Quevedo WC Jr, Fitzpatrick TB, Szabo G (1976) Some aspects of melanin biology: 1950–1975. J Invest Dermatol 67(1):72–89

    Article  CAS  PubMed  Google Scholar 

  • Jinn Y, Ichioka M, Marumo F (1998) Expression of connexin32 and connexin43 gap junction proteins and E-cadherin in human lung cancer. Cancer Lett 127(1–2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Johnson JP, Bar-Eli M, Jansen B, Markhof E (1997) Melanoma progression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer 73(5):769–774

    Article  CAS  PubMed  Google Scholar 

  • Johnson JP, Rummel MM, Rothbacher U, Sers C (1996) MUC18: a cell adhesion molecule with a potential role in tumor growth and tumor cell dissemination. Curr Top Microbiol Immunol 213(Pt 1):95–105

    CAS  PubMed  Google Scholar 

  • Johnson JP, Stade BG, Holzmann B, Schwable W, Riethmuller G (1989) De novo expression of intercellular-adhesion molecule 1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci U S A 86(2):641–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi MB, Ivanov D, Philippova M, Kyriakakis E, Erne P, Resink TJ (2008) A requirement for thioredoxin in redox-sensitive modulation of T-cadherin expression in endothelial cells. Biochem J 416:271–280

    Article  CAS  PubMed  Google Scholar 

  • Jost M, Huggett TM, Kari C, Boise LH, Rodeck U (2001) Epidermal growth factor receptor-dependent control of keratinocyte survival and Bcl-xL expression through a MEK-dependent pathway. J Biol Chem 276:6320–6326

    Article  CAS  PubMed  Google Scholar 

  • Jouve N, Despoix N, Espeli M, Gauthier L, Cypowyj S, Fallague K, Schiff C, Dignat-George F, Vely F, Leroyer AS (2013) The involvement of CD146 and its novel ligand Galectin-1 in apoptotic regulation of endothelial cells. J Biol Chem 288(4):2571–2579. doi:10.1074/jbc.M112.418848

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Ushijima S, Hui AM, Ochiai A, Tsuda H, Sakamoto M, Hirohashi S (1997) The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas. Int J Cancer 71:355–359

    Article  CAS  PubMed  Google Scholar 

  • Kanczuga-Koda L, Sulkowski S, Lenczewski A, Koda M, Wincewicz A, Baltaziak M, Sulkowska M (2006) Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J Clin Pathol 59(4):429–433. doi:10.1136/jcp.2005.029272, 59/4/429 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahana O, Micksche M, Witz IP, Yron I (2002) The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene 21:3969–3977

    Article  CAS  PubMed  Google Scholar 

  • Kerjaschki D, Krisch K, Sleyter UB, Umrath W, Jakesz R, Depisch D, Kokoschka R, Horandner H (1979) The structure of tight junctions in human thyroid tumors. A systematic freeze-fracture study. Am J Pathol 96(1):207–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna P, Yunkunis T, Muddana HS, Peng HH, August A, Dong C (2010) p38 MAP kinase is necessary for melanoma-mediated regulation of VE-cadherin disassembly. Am J Physiol Cell Physiol 298:C1140–C1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Shiozaki H, Hirao M, Maeno Y, Doki Y, Inoue M, Monden T, Ando-Akatsuka Y, Furuse M, Tsukita S, Monden M (1997) Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol 151(1):45–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • King TJ, Fukushima LH, Hieber AD, Shimabukuro KA, Sakr WA, Bertram JS (2000) Reduced levels of connexin43 in cervical dysplasia: inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression. Carcinogenesis 21(6):1097–1109

    Article  CAS  PubMed  Google Scholar 

  • King TJ, Lampe PD (2004a) The gap junction protein connexin32 is a mouse lung tumor suppressor. Cancer Res 64(20):7191–7196. doi:10.1158/0008-5472.CAN-04-0624, 64/20/7191 [pii]

    Article  CAS  PubMed  Google Scholar 

  • King TJ, Lampe PD (2004b) Mice deficient for the gap junction protein Connexin32 exhibit increased radiation-induced tumorigenesis associated with elevated mitogen-activated protein kinase (p44/Erk1, p42/Erk2) activation. Carcinogenesis 25(5):669–680. doi:10.1093/carcin/bgh071bgh071 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR (2007) Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20(1):102–107

    Article  CAS  PubMed  Google Scholar 

  • Kluger HM, Hoyt K, Bacchiocchi A, Mayer T, Kirsch J, Kluger Y, Sznol M, Ariyan S, Molinaro A, Halaban R (2011) Plasma markers for identifying patients with metastatic melanoma. Clin Cancer Res 17(8):2417–2425. doi:10.1158/1078-0432.CCR-10-2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi OP, Sukumar S (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22(13):2021–2033

    Article  CAS  PubMed  Google Scholar 

  • Kramer F, White K, Kubbies M, Swisshelm K, Weber BH (2000) Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer. Hum Genet 107(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Kraus A, Masat L, Johnson JP (1997) Analysis of the expression of intercellular adhesion molecule-1 and MUC18 on benign and malignant melanocytic lesions using monoclonal antibodies directed against distinct epitopes and recognizing denatured, non-glycosylated antigen. Melanoma Res 7(Suppl 2):S75–S81

    CAS  PubMed  Google Scholar 

  • Kretz M, Maass K, Willecke K (2004) Expression and function of connexins in the epidermis, analyzed with transgenic mouse mutants. Eur J Cell Biol 83(11–12):647–654

    Article  CAS  PubMed  Google Scholar 

  • Krutovskikh V, Mazzoleni G, Mironov N, Omori Y, Aguelon AM, Mesnil M, Berger F, Partensky C, Yamasaki H (1994) Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int J Cancer 56(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Krutovskikh VA, Piccoli C, Yamasaki H (2002) Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene 21(13):1989–1999. doi:10.1038/sj.onc.1205187

    Article  CAS  PubMed  Google Scholar 

  • Krutovskikh VA, Troyanovsky SM, Piccoli C, Tsuda H, Asamoto M, Yamasaki H (2000) Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19(4):505–513. doi:10.1038/sj.onc.1203340

    Article  CAS  PubMed  Google Scholar 

  • Krutovskikh VA, Yamasaki H, Tsuda H, Asamoto M (1998) Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line BC31 by a dominant-negative connexin 43 mutant. Mol Carcinog 23(4):254–261. doi:10.1002/(SICI)1098-2744(199812)23:4<254::AID-MC9>3.0.CO;2-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kuphal S, Poser I, Jobin C, Hellerbrand C, Bosserhoff AK (2004) Loss of E-cadherin leads to upregulation of NFkappaB activity in malignant melanoma. Oncogene 23:8509–8519

    Article  CAS  PubMed  Google Scholar 

  • Kuphal S, Martyn AC, Pedley J, Crowther LM, Bonazzi VF, Parsons PG, Bosserhoff AK, Hayward NK, Boyle GM (2009) H-cadherin expression reduces invasion of malignant melanoma. Pigment Cell Melanoma Res 22:296–306

    Article  CAS  PubMed  Google Scholar 

  • Bosserhoff AK, Ellmann L, Quast AS, Eberle J, Boyle GM, Kuphal S (2014) Loss of T-cadherin (CDH-13) regulates AKT signaling and desensitizes cells to apoptosis in melanoma. Mol Carcinog 53(8):635–647

    CAS  PubMed  Google Scholar 

  • Kuphal S, Haass NK (2011) Cell–cell and cell–matrix contacts in melanoma and the tumor microenvironment. In: Bosserhoff AK (ed) Melanoma development – molecular biology, genetics and clinical application. Springer, Wien, pp 181–215

    Google Scholar 

  • Lampe PD (1994) Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J Cell Biol 127(6 Pt 2):1895–1905

    Article  CAS  PubMed  Google Scholar 

  • Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW (2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 81(8):419–435

    Article  CAS  PubMed  Google Scholar 

  • Langlois S, Maher AC, Manias JL, Shao Q, Kidder GM, Laird DW (2007) Connexin levels regulate keratinocyte differentiation in the epidermis. J Biol Chem 282(41):30171–30180

    Article  CAS  PubMed  Google Scholar 

  • Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91:8263–8267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann JM, Holzmann B, Breitbart EW, Schmiegelow P, Riethmuller G, Johnson JP (1987) Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res 47(3):841–845

    CAS  PubMed  Google Scholar 

  • Lehmann JM, Riethmuller G, Johnson JP (1989) MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci U S A 86(24):9891–9895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X, Guan CW, Song Y, Wang H (2015) The multifaceted role of CD146/MCAM in the promotion of melanoma progression. Cancer Cell Int 15(1):3. doi:10.1186/s12935-014-0147-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Leotlela PD, Wade MS, Duray PH, Rhode MJ, Brown HF, Rosenthal DT, Dissanayake SK, Earley R, Indig FE, Nickoloff BJ, Taub DD, Kallioniemi OP, Meltzer P, Morin PJ, Weeraratna AT (2007) Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene 26(26):3846–3856. doi:10.1038/sj.onc.1210155, 1210155 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Li D, Mrsny RJ (2000) Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 148(4):791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Satyamoorthy K, Herlyn M (2001) N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 61:3819–3825

    CAS  PubMed  Google Scholar 

  • Li Q, Omori Y, Nishikawa Y, Yoshioka T, Yamamoto Y, Enomoto K (2007) Cytoplasmic accumulation of connexin32 protein enhances motility and metastatic ability of human hepatoma cells in vitro and in vivo. Int J Cancer 121(3):536–546. doi:10.1002/ijc.22696

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Kumar SM, Lu H, Liu A, Yang R, Pushparajan A, Guo W, Xu X (2012) MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kB1-Snail1 pathway in melanoma. J Pathol 226:61–72

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, Haubrich S, Willecke K, Goldman SA, Nedergaard M (2002) Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci 22(11):4302–4311, 2002645022/11/4302 [pii]

    CAS  PubMed  Google Scholar 

  • Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H, Bar-Eli M, Aldape KD, Fidler IJ (2010) Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12(9):748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Genet MD, Haines JE, Mehanna EK, Wu S, Chen HI, Chen Y, Qureshi AA, Han J, Chen X, Fisher DE, Pandolfi PP, Yuan ZM (2015) ZBTB7A suppresses melanoma metastasis by transcriptionally repressing MCAM. Mol Cancer Res 13(8):1206–1217. doi:10.1158/1541-7786.MCR-15-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61(4):829–913

    CAS  PubMed  Google Scholar 

  • Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209(5029):1248–1249

    Article  CAS  PubMed  Google Scholar 

  • Loewenstein WR, Rose B (1992) The cell-cell channel in the control of growth. Semin Cell Biol 3(1):59–79

    Article  CAS  PubMed  Google Scholar 

  • Long H, Crean CD, Lee WH, Cummings OW, Gabig TG (2001) Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res 61(21):7878–7881

    CAS  PubMed  Google Scholar 

  • Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, Grummer R, Kretz M, Lewalter T, Tiemann K, Winterhager E, Herzog V, Willecke K (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 15(10):4597–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Man YK, Trolove C, Tattersall D, Thomas AC, Papakonstantinopoulou A, Patel D, Scott C, Chong J, Jagger DJ, O’Toole EA, Navsaria H, Curtis MA, Kelsell DP (2007) A deafness-associated mutant human connexin 26 improves the epithelial barrier in vitro. J Membr Biol 218(1–3):29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin TA, Jiang WG (2001) Tight junctions and their role in cancer metastasis. Histol Histopathol 16(4):1183–1195

    CAS  PubMed  Google Scholar 

  • Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788(4):872–891. doi:10.1016/j.bbamem.2008.11.005, S0005-2736(08)00373-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T, Pfeifer A, Fassler R, Bosserhoff AK (2009) Down-regulation of CYLD expression by snail promotes tumor progression in malignant melanoma. J Exp Med 206:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarty MF, Bielenberg DR, Nilsson MB, Gershenwald JE, Barnhill RL, Ahearne P, Bucana CD, Fidler IJ (2003) Epidermal hyperplasia overlying human melanoma correlates with tumour depth and angiogenesis. Melanoma Res 13(4):379–387

    Article  CAS  PubMed  Google Scholar 

  • McLachlan E, Shao Q, Wang HL, Langlois S, Laird DW (2006) Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis. Cancer Res 66(20):9886–9894. doi:10.1158/0008-5472.CAN-05-4302, 66/20/9886 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Busch S, Gast D, Goppert A, Altevogt P, Maczey E, Riedle S, Garbe C, Schittek B (2006) The adhesion molecule L1 (CD171) promotes melanoma progression. Int J Cancer 119(3):549–555

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, Li G, Herlyn M (2005) The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10(2986–3001):2986–3001

    Article  CAS  PubMed  Google Scholar 

  • Mese G, Richard G, White TW (2007) Gap junctions: basic structure and function. J Invest Dermatol 127(11):2516–2524

    Article  CAS  PubMed  Google Scholar 

  • Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML (2005) Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719(1–2):125–145. doi:10.1016/j.bbamem.2005.11.004, S0005-2736(05)00361-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Miekus K, Czernik M, Sroka J, Czyz J, Madeja Z (2005) Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of dunning rat prostate cancer cells. Biol Cell 97(12):893–903. doi:10.1042/BC20040129

    Article  CAS  PubMed  Google Scholar 

  • Miele ME, Bennett CF, Miller BE, Welch DR (1994) Enhanced metastatic ability of TNF-alpha-treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp Cell Res 214(1):231–241

    Article  CAS  PubMed  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    Article  CAS  PubMed  Google Scholar 

  • Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60:121–142

    Article  CAS  PubMed  Google Scholar 

  • Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y (2000) Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res 12(11–12):469–476

    CAS  Google Scholar 

  • Moennikes O, Buchmann A, Willecke K, Traub O, Schwarz M (2000) Hepatocarcinogenesis in female mice with mosaic expression of connexin32. Hepatology 32(3):501–506. doi:10.1053/jhep.2000.16598, S0270913900790100

    Article  CAS  PubMed  Google Scholar 

  • Molina-Ortiz I, Bartolome RA, Hernandez-Varas P, Colo GP, Teixido J (2009) Overexpression of E-cadherin on melanoma cells inhibits chemokine-promoted invasion involving p190RhoGAP/p120ctn-dependent inactivation of RhoA. J Biol Chem 284:15147–15157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery AM, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD, Zhao X, Reisfeld RA (1996) Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 132(3):475–485

    Article  CAS  PubMed  Google Scholar 

  • Mori R, Power KT, Wang CM, Martin P, Becker DL (2006) Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119(Pt 24):5193–5203

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Morita NI, Nemoto K, Nakamura Y, Miyachi Y, Muto M (2008) Expression of claudin in melanoma cells. J Dermatol 35(1):36–38. doi:10.1111/j.1346-8138.2007.00409.x, JDE409 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mortarini R, Anichini A (1993) From adhesion to signalling: roles of integrins in the biology of human melanoma. Melanoma Res 3:87–97

    Article  CAS  PubMed  Google Scholar 

  • Mullin JM, Kampherstein JA, Laughlin KV, Saladik DT, Soler AP (1997) Transepithelial paracellular leakiness induced by chronic phorbol ester exposure correlates with polyp-like foci and redistribution of protein kinase C-alpha. Carcinogenesis 18(12):2339–2345

    Article  CAS  PubMed  Google Scholar 

  • Muller EJ, Williamson L, Kolly C, Suter MM (2008) Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 128:501–516

    Article  CAS  PubMed  Google Scholar 

  • Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S (1999) Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 59(21):5464–5470

    CAS  PubMed  Google Scholar 

  • Naoi Y, Miyoshi Y, Taguchi T, Kim SJ, Arai T, Tamaki Y, Noguchi S (2007) Connexin26 expression is associated with lymphatic vessel invasion and poor prognosis in human breast cancer. Breast Cancer Res Treat 106(1):11–17. doi:10.1007/s10549-006-9465-8

    Article  CAS  PubMed  Google Scholar 

  • Natali P, Nicotra MR, Cavaliere R, Bigotti A, Romano G, Temponi M, Ferrone S (1990) Differential expression of intercellular adhesion molecule 1 in primary and metastatic melanoma lesions. Cancer Res 50(4):1271–1278

    CAS  PubMed  Google Scholar 

  • Natali PG, Hamby CV, Felding-Habermann B, Liang B, Nicotra MR, Di Filippo F, Giannarelli D, Temponi M, Ferrone S (1997) Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 57(8):1554–1560

    CAS  PubMed  Google Scholar 

  • Natali PG, Nicotra MR, Bartolazzi A, Cavaliere R, Bigotti A (1993) Integrin expression in cutaneous malignant melanoma: association of the alpha 3/beta 1 heterodimer with tumor progression. Int J Cancer 54:68–72

    Article  CAS  PubMed  Google Scholar 

  • Naus CC, Laird DW (2010) Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10(6):435–441. doi:10.1038/nrc2841, nrc2841 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, Michielin O, Muehlethaler K, Speiser D, Beckmann JS, Xenarios I, Halazonetis TD, Jongeneel CV, Stevenson BJ, Antonarakis SE (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44:133–139

    Article  PubMed  CAS  Google Scholar 

  • Nishimura EK, Yoshida H, Kunisada T, Nishikawa SI (1999) Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Dev Biol 215:155–166

    Article  CAS  PubMed  Google Scholar 

  • Nolte C, Moos M, Schachner M (1999) Immunolocalization of the neural cell adhesion molecule L1 in epithelia of rodents. Cell Tissue Res 298(2):261–273

    Article  CAS  PubMed  Google Scholar 

  • Omori Y, Yamasaki H (1998) Mutated connexin43 proteins inhibit rat glioma cell growth suppression mediated by wild-type connexin43 in a dominant-negative manner. Int J Cancer 78(4):446–453. doi:10.1002/(SICI)1097-0215(19981109)78:4<446::AID-IJC10>3.0.CO;2-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654

    Article  CAS  PubMed  Google Scholar 

  • Overduin M, Harvey TS, Bagby S, Tong KI, Yau P, Takeichi M, Ikura M (1995) Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267:386–389

    Article  CAS  PubMed  Google Scholar 

  • Papusheva E, Heisenberg CP (2010) Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J 29:2753–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6(8):324–329

    Article  CAS  PubMed  Google Scholar 

  • Patel DD, Wee SF, Whichard LP, Bowen MA, Pesando JM, Aruffo A, Haynes BF (1995) Identification and characterization of a 100-kD ligand for CD6 on human thymic epithelial cells. J Exp Med 181(4):1563–1568

    Article  CAS  PubMed  Google Scholar 

  • Pearl RA, Pacifico MD, Richman PI, Wilson GD, Grover R (2008) Stratification of patients by melanoma cell adhesion molecule (MCAM) expression on the basis of risk: implications for sentinel lymph node biopsy. J Plast Reconstr Aesthet Surg 61(3):265–271

    Article  CAS  PubMed  Google Scholar 

  • Pece S, Gutkind JS (2000) Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275:41227–41233

    Article  CAS  PubMed  Google Scholar 

  • Penna E, Orso F, Cimino D, Vercellino I, Grassi E, Quaglino E, Turco E, Taverna D (2013) miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res 73(13):4098–4111. doi:10.1158/0008-5472.CAN-12-3686

    Article  CAS  PubMed  Google Scholar 

  • Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828(1):15–22. doi:10.1016/j.bbamem.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  • Perrais M, Chen X, Perez-Moreno M, Gumbiner BM (2007) E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell 18:2013–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276(29):27424–27431

    Article  CAS  PubMed  Google Scholar 

  • Pollmann MA, Shao Q, Laird DW, Sandig M (2005) Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res 7(4):R522–R534. doi:10.1186/bcr1042, bcr1042 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollok S, Pfeiffer AC, Lobmann R, Wright CS, Moll I, Martin PE, Brandner JM (2011) Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells. J Cell Mol Med 15(4):861–873. doi:10.1111/j.1582-4934.2010.01057.x

    Article  CAS  PubMed  Google Scholar 

  • Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK (2001) Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276:24661–24666

    Article  CAS  PubMed  Google Scholar 

  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946

    Article  CAS  PubMed  Google Scholar 

  • Pummi K, Malminen M, Aho H, Karvonen SL, Peltonen J, Peltonen S (2001) Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol 117(5):1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Wang J, Romanyuk O, Siu CH (2006) Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol Biol Cell 17:1261–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel LB, Agarwal R, D’Souza T, Pizer ES, Alo PL, Lancaster WD, Gregoire L, Schwartz DR, Cho KR, Morin PJ (2003) Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 9(7):2567–2575

    CAS  PubMed  Google Scholar 

  • Rapanotti MC, Suarez Viguria TM, Costanza G, Ricozzi I, Pierantozzi A, Di Stefani A, Campione E, Bernardini S, Chimenti S, Orlandi A, Bianchi L (2014) Sequential molecular analysis of circulating MCAM/MUC18 expression: a promising disease biomarker related to clinical outcome in melanoma. Arch Dermatol Res 306(6):527–537. doi:10.1007/s00403-014-1473-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Hamada J, Takeichi N, Fujikawa S, Kobayashi H (1990) Ultrastructural differences in junctional intercellular communication between highly and weakly metastatic clones derived from rat mammary carcinoma. Cancer Res 50(2):358–362

    CAS  PubMed  Google Scholar 

  • Rezze GG, Fregnani JH, Duprat J, Landman G (2011) Cell adhesion and communication proteins are differentially expressed in melanoma progression model. Hum Pathol 42(3):409–418. doi:10.1016/j.humpath.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  • Richard G (2000) Connexins: a connection with the skin. Exp Dermatol 9(2):77–96

    Article  CAS  PubMed  Google Scholar 

  • Rickelt S, Franke WW, Doerflinger Y, Goerdt S, Brandner JM, Peitsch WK (2008) Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 334:401–422

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR (2008) Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 68(19):7872–7881

    Google Scholar 

  • Rubina KA, Yurlova EI, Sysoeva VY, Semina EV, Kalinina NI, Poliakov AA, Mikhaylova IN, Andronova NV, Treshalina HM (2013) T-cadherin stimulates melanoma cell proliferation and mesenchymal stromal cell recruitment, but inhibits angiogenesis in a mouse melanoma model. In: Jianyuan Chai (ed) Cardiology and Cardiovascular Medicine. “Research Directions in Tumor Angiogenesis”, pp 143–174

    Google Scholar 

  • Sadeqzadeh E, de Bock CE, Zhang XD, Shipman KL, Scott NM, Song C, Yeadon T, Oliveira CS, Jin B, Hersey P, Boyd AW, Burns GF, Thorne RF (2011) Dual processing of FAT1 cadherin protein by human melanoma cells generates distinct protein products. J Biol Chem 286:28181–28191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccheri F, Pozzi C, Avogadri F, Barozzi S, Faretta M, Fusi P, Rescigno M (2010) Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci Transl Med 2(44):44ra57. doi:10.1126/scitranslmed.3000739

    Article  PubMed  Google Scholar 

  • Saito-Katsuragi M, Asada H, Niizeki H, Katoh F, Masuzawa M, Tsutsumi M, Kuniyasu H, Ito A, Nojima H, Miyagawa S (2007) Role for connexin 26 in metastasis of human malignant melanoma: communication between melanoma and endothelial cells via connexin 26. Cancer 110(5):1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Takazawa H, Uzawa K, Tanzawa H, Sato K (1998) Reduced expression of E-cadherin in oral squamous cell carcinoma: relationship with DNA methylation of 5’ CpG island. Int J Oncol 12:293–298

    CAS  PubMed  Google Scholar 

  • Sakai R, Henderson JT, O’Bryan JP, Elia AJ, Saxton TM, Pawson T (2000) The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 28:819–833

    Article  CAS  PubMed  Google Scholar 

  • Sanders DS, Blessing K, Hassan GA, Bruton R, Marsden JR, Jankowski J (1999) Alterations in cadherin and catenin expression during the biological progression of melanocytic tumours. Mol Pathol 52:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Walker A, Li L, Haass NK, Herlyn M (2009) Melanocytes: from morphology to application. Skin Pharmacol Physiol 22(2):114–121

    Article  CAS  PubMed  Google Scholar 

  • Sargen MR, Gormley RH, Pasha TL, Yum S, Acs G, Xu X, Zhang PJ (2013) Melanocytic tumors express connexin 43 but not 26: immunohistochemical analysis with potential significance in melanocytic oncogenesis. Am J Dermatopathol 35(8):813–7. doi:10.1097/DAD.0b013e318278d401

    Article  PubMed  Google Scholar 

  • Satyamoorthy K, Muyrers J, Meier F, Patel D, Herlyn M (2001) Mel-CAM-specific genetic suppressor elements inhibit melanoma growth and invasion through loss of gap junctional communication. Oncogene 20(34):4676–4684

    Article  CAS  PubMed  Google Scholar 

  • Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR, Donahue HJ (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61(5):1765–1767

    CAS  PubMed  Google Scholar 

  • Schadendorf D, Gawlik C, Haney U, Ostmeier H, Suter L, Czarnetzki BM (1993) Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours. J Pathol 170(4):429–434

    Article  CAS  PubMed  Google Scholar 

  • Schadendorf D, Heidel J, Gawlik C, Suter L, Czarnetzki BM (1995) Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J Natl Cancer Inst 87(5):366–371

    Article  CAS  PubMed  Google Scholar 

  • Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540:1–21

    Article  CAS  PubMed  Google Scholar 

  • Schiffner S, Zimara N, Schmid R, Bosserhoff AK (2011) p54nrb is a new regulator of progression of malignant melanoma. Carcinogenesis 32(8):1176–1182. doi:10.1093/carcin/bgr103

    Article  CAS  PubMed  Google Scholar 

  • Schmitt CJ, Franke WW, Goerdt S, Falkowska-Hansen B, Rickelt S, Peitsch WK (2007) Homo- and heterotypic cell contacts in malignant melanoma cells and desmoglein 2 as a novel solitary surface glycoprotein. J Invest Dermatol 127(9):2191–2206. doi:10.1038/sj.jid.5700849, 5700849 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Seftor RE, Seftor EA, Hendrix MJ (1999) Molecular role(s) for integrins in human melanoma invasion. Cancer Metastasis Rev 18:359–375

    Article  CAS  PubMed  Google Scholar 

  • Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW (2005) Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res 65(7):2705–2711. doi:10.1158/0008-5472.CAN-04-2367, 65/7/2705 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Khusial PR, Li X, Ichikawa H, Moreno AP, Goldberg GS (2007) SRC utilizes Cas to block gap junctional communication mediated by connexin43. J Biol Chem 282(26):18914–18921. doi:10.1074/jbc.M608980200, M608980200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shih IM, Elder DE, Speicher D, Johnson JP, Herlyn M (1994) Isolation and functional characterization of the A32 melanoma-associated antigen. Cancer Res 54(9):2514–2520

    CAS  PubMed  Google Scholar 

  • Shih IM, Speicher D, Hsu MY, Levine E, Herlyn M (1997a) Melanoma cell-cell interactions are mediated through heterophilic Mel-CAM/ligand adhesion. Cancer Res 57(17):3835–3840

    CAS  PubMed  Google Scholar 

  • Shih LM, Hsu MY, Palazzo JP, Herlyn M (1997b) The cell-cell adhesion receptor Mel-CAM acts as a tumor suppressor in breast carcinoma. Am J Pathol 151(3):745–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96:5522–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256

    Article  CAS  PubMed  Google Scholar 

  • Sienel W, Dango S, Woelfle U, Morresi-Hauf A, Wagener C, Brummer J, Mutschler W, Passlick B, Pantel K (2003) Elevated expression of carcinoembryonic antigen-related cell adhesion molecule 1 promotes progression of non-small cell lung cancer. Clin Cancer Res 9(6):2260–2266

    CAS  PubMed  Google Scholar 

  • Silye R, Karayiannakis AJ, Syrigos KN, Poole S, van Noorden S, Batchelor W, Regele H, Sega W, Boesmueller H, Krausz T, Pignatelli M (1998) E-cadherin/catenin complex in benign and malignant melanocytic lesions. J Pathol 186:350–355

    Article  CAS  PubMed  Google Scholar 

  • Smalley KS, Brafford P, Haass NK, Brandner JM, Brown E, Herlyn M (2005) Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J Pathol 166(5):1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soler AP, Marano CW, Bryans M, Miller RD, Garulacan LA, Mauldin SK, Stamato TD, Mullin JM (1999) Activation of NF-kappaB is necessary for the restoration of the barrier function of an epithelium undergoing TNF-alpha-induced apoptosis. Eur J Cell Biol 78(1):56–66

    Article  CAS  PubMed  Google Scholar 

  • Spangler B, Kappelmann M, Schittek B, Meierjohann S, Vardimon L, Bosserhoff AK, Kuphal S (2012) ETS1/RhoC signaling regulates the transcription factor c-Jun in melanoma. Int J Cancer 130:2801–2811

    Article  CAS  PubMed  Google Scholar 

  • Spray DC (1994) Physiological and pharmacological regulation of gap junction channels. In: Citi S (ed) Molecular mechanisms of epithelial cell junctions: from development to disease. R. G. Landes Company, Austin, pp 195–215

    Google Scholar 

  • Stevenson BR, Keon BH (1998) The tight junction: morphology to molecules. Annu Rev Cell Dev Biol 14:89–109

    Article  CAS  PubMed  Google Scholar 

  • Stoletov K, Strnadel J, Zardouzian E, Momiyama M, Park FD, Kelber JA, Pizzo DP, Hoffman R, Vandenberg SR, Klemke RL (2013) Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci 126(Pt 4):904–913. doi:10.1242/jcs.112748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strathdee G (2002) Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol 12:373–379

    Article  CAS  PubMed  Google Scholar 

  • Su YA, Bittner ML, Chen Y, Tao L, Jiang Y, Zhang Y, Stephan DA, Trent JM (2000) Identification of tumor-suppressor genes using human melanoma cell lines UACC903, UACC903(+6), and SRS3 by comparison of expression profiles. Mol Carcinog 28(2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Tada J, Hashimoto K (1997) Ultrastructural localization of gap junction protein connexin 43 in normal human skin, basal cell carcinoma, and squamous cell carcinoma. J Cutan Pathol 24(10):628–635

    Article  CAS  PubMed  Google Scholar 

  • Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y (2005) Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 11(20):7234–7242

    Article  CAS  PubMed  Google Scholar 

  • Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA (1994) E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 107:983–992

    CAS  PubMed  Google Scholar 

  • Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol 7(9):713–716

    Article  CAS  PubMed  Google Scholar 

  • Thies A, Berlin A, Brunner G, Schulze HJ, Moll I, Pfuller U, Wagener C, Schachner M, Altevogt P, Schumacher U (2007) Glycoconjugate profiling of primary melanoma and its sentinel node and distant metastases: implications for diagnosis and pathophysiology of metastases. Cancer Lett 248(1):68–80

    Article  CAS  PubMed  Google Scholar 

  • Thies A, Moll I, Berger J, Wagener C, Brummer J, Schulze HJ, Brunner G, Schumacher U (2002a) CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol 20(10):2530–2536

    Article  CAS  PubMed  Google Scholar 

  • Thies A, Schachner M, Moll I, Berger J, Schulze HJ, Brunner G, Schumacher U (2002b) Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 38(13):1708–1716

    Article  CAS  PubMed  Google Scholar 

  • Trimmer C, Whitaker-Menezes D, Bonuccelli G, Milliman JN, Daumer KM, Aplin AE, Pestell RG, Sotgia F, Lisanti MP, Capozza F (2010) CAV1 inhibits metastatic potential in melanomas through suppression of the integrin/Src/FAK signaling pathway. Cancer Res 70:7489–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trosko JE, Chang CC, Madhukar BV, Klaunig JE (1990) Chemical, oncogene and growth factor inhibition gap junctional intercellular communication: an integrative hypothesis of carcinogenesis. Pathobiology 58(5):265–278

    Article  CAS  PubMed  Google Scholar 

  • Troussard AA, Tan C, Yoganathan TN, Dedhar S (1999) Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. Mol Cell Biol 19:7420–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H, Werber J, Davia MO, Edelman M, Tanaka KE, Melman A, Christ GJ, Geliebter J (1996) Reduced connexin 43 expression in high grade, human prostatic adenocarcinoma cells. Biochem Biophys Res Commun 227(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149(1):13–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2(4):285–293

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Matsuda K, Sasahara K, Kawabata H, Nishioka M (1995) Immunohistochemistry of gap junctions in normal and diseased gastric mucosa of humans. Gastroenterology 109(5):1492–1496

    Article  CAS  PubMed  Google Scholar 

  • van Marck V, Stove C, Van Den Bossche K, Stove V, Paredes J, Vander Haeghen Y (2005) P-cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res 65(19):8774–8783

    Article  PubMed  CAS  Google Scholar 

  • van de Stolpe A, van der Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med 74(1):13–33

    Article  PubMed  Google Scholar 

  • van Kempen LC, Meier F, Egeblad M, Kersten-Niessen MJ, Garbe C, Weidle UH, Van Muijen GN, Herlyn M, Bloemers HP, Swart GW (2004) Truncation of activated leukocyte cell adhesion molecule: a gateway to melanoma metastasis. J Invest Dermatol 122(5):1293–1301

    Article  PubMed  Google Scholar 

  • van Kempen LC, van den Oord JJ, van Muijen GN, Weidle UH, Bloemers HP, Swart GW (2000) Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am J Pathol 156(3):769–774

    Article  PubMed  PubMed Central  Google Scholar 

  • van Noort M, Clevers H (2002) TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev Biol 244:1–8

    Article  PubMed  CAS  Google Scholar 

  • Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28(4):327–337

    Article  CAS  PubMed  Google Scholar 

  • Villanueva J, Herlyn M (2008) Melanoma and the tumor microenvironment. Curr Oncol Rep 10(5):439–446

    Article  CAS  PubMed  Google Scholar 

  • Villares GJ, Dobroff AS, Wang H, Zigler M, Melnikova VO, Huang L, Bar-Eli M (2009) Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43. Cancer Res 69(16):6730–6737. doi:10.1158/0008-5472.CAN-09-0300, 69/16/6730 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villares GJ, Zigler M, Bar-Eli M (2011) The emerging role of the thrombin receptor (PAR-1) in melanoma metastasis – a possible therapeutic target. Oncotarget 2(1–2):8–17

    PubMed  PubMed Central  Google Scholar 

  • Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH (2001) Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12(9):2699–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson-Hurst K, Becker D (2006) The role of N-cadherin, MCAM and beta3 integrin in melanoma progression, proliferation, migration and invasion. Cancer Biol Ther 5:1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Weinstein RS, Merk FB, Alroy J (1976) The structure and function of intercellular junctions in cancer. Adv Cancer Res 23:23–89

    Article  CAS  PubMed  Google Scholar 

  • Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O (1992) Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer 51(4):522–529

    Article  CAS  PubMed  Google Scholar 

  • Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, Peter ME, Orntoft TF, Kjems J, Clark SJ (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 128:1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383(5):725–737

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105(6):586–592

    CAS  Google Scholar 

  • Wong RP, Ng P, Dedhar S, Li G (2007) The role of integrin-linked kinase in melanoma cell migration, invasion, and tumor growth. Mol Cancer Ther 6:1692–1700

    Article  CAS  PubMed  Google Scholar 

  • Wright CS, van Steensel MA, Hodgins MB, Martin PE (2009) Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro. Wound Repair Regen 17(2):240–249. doi:10.1111/j.1524-475X.2009.00471.x

    Article  PubMed  Google Scholar 

  • Xie S, Luca M, Huang S, Gutman M, Reich R, Johnson JP, Bar-Eli M (1997) Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res 57(11):2295–2303

    CAS  PubMed  Google Scholar 

  • Xu J, Nicholson BJ (2013) The role of connexins in ear and skin physiology – functional insights from disease-associated mutations. Biochim Biophys Acta 1828(1):167–178. doi:10.1016/j.bbamem.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka K, Nouchi T, Tazawa J, Hiranuma S, Marumo F, Sato C (1995) Expression of gap junction protein connexin 32 and E-cadherin in human hepatocellular carcinoma. J Hepatol 22(5):536–539, 0168-8278(95)80447-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  • Yazawa EM, Geddes-Sweeney JE, Cedeno-Laurent F, Walley KC, Barthel SR, Opperman MJ, Liang J, Lin JY, Schatton T, Laga AC, Mihm MC, Qureshi AA, Widlund HR, Murphy GF, Dimitroff CJ (2015) Melanoma cell galectin-1 ligands functionally correlate with malignant potential. J Invest Dermatol 135(7):1849–1862. doi:10.1038/jid.2015.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Goodrich C, Fu C, Dong C (2014) Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCalpha-p38-SP-1 pathway. FASEB J 28(11):4591–4609. doi:10.1096/fj.11-202747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZQ, Zhang W, Wang NQ, Bani-Yaghoub M, Lin ZX, Naus CC (1998) Suppression of tumorigenicity of human lung carcinoma cells after transfection with connexin43. Carcinogenesis 19(11):1889–1894

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Caveney S, Kidder GM, Naus CC (1991) Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci U S A 88(5):1883–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M (2011) PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Res 71(21):6561–6566. doi:10.1158/0008-5472.CAN-11-1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker SN, Bancroft TA, Place DE, Des Soye B, Bagati A, Berezney R (2013) A dominant negative Cx43 mutant differentially affects tumorigenic and invasive properties in human metastatic melanoma cells. J Cell Physiol 228(4):853–859. doi:10.1002/jcp.24235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

NKH is a Cameron Fellow of the Melanoma and Skin Cancer Research Institute, Australia, and a Sydney Medical School Foundation Fellow. NKH also thanks the German Research Foundation (DFG, HA26801), Cancer Council NSW (RG 09–08, RG 13–06), Cancer Australia/Cure Cancer Australia Foundation (570778), Cancer Institute New South Wales (08/RFG/1-27), and the National Health and Medical Research Council Australia (1003637, 1084893) for contributing grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Kuphal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kuphal, S., Haass, N.K. (2017). Cell–Cell Contacts in Melanoma and the Tumor Microenvironment. In: Bosserhoff, A. (eds) Melanoma Development. Springer, Cham. https://doi.org/10.1007/978-3-319-41319-8_9

Download citation

Publish with us

Policies and ethics