Skip to main content

Advertisement

Log in

Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the tissue integration of melanocytes and melanoma cells, an important role is attributed to cell adhesion molecules, notably the cadherins. In cultured melanoma cells, we have previously described a more heterogeneous repertoire of cadherins than normal, including some melanoma subtypes synthesizing the desmosomal cadherin, desmoglein 2, out of the desmosomal context. Using biochemical and immunological characterization of junctional molecules, confocal laser scanning, and electron and immunoelectron microscopy, we now demonstrate homo- and heterotypic cell-cell adhesions of normal epidermal melanocytes. In human epidermis, both in situ and in cell culture, melanocytes and keratinocytes are connected by closely aligned membranes that are interspersed by small puncta adhaerentia containing heterotypic complexes of E- and P-cadherin. Moreover, melanocytes growing in culture often begin to synthesize desmoglein 2, which is dispersed over extended areas of intimate adhesive cell-cell associations. As desmoglein 2 is not found in melanocytes in situ, we hypothesize that its synthesis is correlated with cell proliferation. Indeed, in tissue microarrays, desmoglein 2 has been demonstrated in a sizable subset of nevi and primary melanomas. The biological meanings of these cell-cell adhesion molecule arrangements, the possible diagnostic and prognostic significance of these findings, and the implications of the heterogeneity types of melanomas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achtstaetter T, Moll R, Anderson A, Kuhn C, Pitz S, Schwechheimer K, Franke WW (1986) Expression of glial filament protein (GFP) in nerve sheaths and non-neural cells re-examined using monoclonal antibodies, with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation 31:206–227

    CAS  Google Scholar 

  • Aho S, Levänsuo L, Montonen O, Kari C, Rodeck U, Uitto J (2002) Specific sequences in p120ctn determine subcellular distribution of its multiple isoforms involved in cellular adhesion of normal and malignant epithelial cells. J Cell Sci 115:1391–1402

    CAS  PubMed  Google Scholar 

  • Alexander JS, Blaschuk OW, Haselton FR (1993) An N-cadherin-like protein contributes to solute barrier maintenance in cultured endothelium. J Cell Physiol 156:610–618

    CAS  PubMed  Google Scholar 

  • Andersen K, Nesland JM, Holm R, Florenes VA, Fodstad O, Maelandsmo GM (2004) Expression of S100A4 combined with reduced E-cadherin expression predicts patient outcome in malignant melanoma. Mod Pathol 17:990–997

    CAS  PubMed  Google Scholar 

  • Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA (2005) Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res 11:8606–8614

    CAS  PubMed  Google Scholar 

  • Bauer R, Wild PJ, Meyer S, Bataille F, Pauer A, Klinkhammer-Schalke M, Hofstaedter F, Bosserhoff AK (2006) Prognostic relevance of P-cadherin expression in melanocytic skin tumours analysed by high-throughput tissue microarrays. J Clin Pathol 59:699–705

    CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    CAS  PubMed  Google Scholar 

  • Breathnach AS (1974) An atlas of the ultrastructure of human skin. Churchill, London

    Google Scholar 

  • Buxton RS, Cowin P, Franke WW, Garrod DR, Green KJ, King IA, Koch PJ, Magee AI, Rees DA, Stanley JR, Steinberg MS (1993) Nomenclature of the desmosomal cadherins. J Cell Biol 121:481–483

    CAS  PubMed  Google Scholar 

  • Cavallaro U, Christofori G (2004) Multitasking in tumor progression: signaling functions of cell adhesion molecules. Ann N Y Acad Sci 1014:58–66

    CAS  PubMed  Google Scholar 

  • Chitaev NA, Troyanovsky SM (1997) Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J Cell Biol 138:193–201

    CAS  PubMed  Google Scholar 

  • Christofori G (2003) Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO J 22:2318–2323

    CAS  PubMed  Google Scholar 

  • Cowin P, Mattey D, Garrod D (1984) Identification of desmosomal surface components (desmocollins) and inhibition of desmosome formation by specific Fab’. J Cell Sci 70:41–60

    CAS  PubMed  Google Scholar 

  • Cowin P, Kapprell HP, Franke WW, Tamkun J, Hynes RO (1986) Plakoglobin: a protein common to different kinds of intercellular adhering junctions. Cell 46:1063–1073

    CAS  PubMed  Google Scholar 

  • Danen EH, Vries TJ de, Morandini R, Ghanem GG, Ruiter DJ, Muijen GN van (1996) E-cadherin expression in human melanoma. Melanoma Res 6:127–131

    CAS  PubMed  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    CAS  PubMed  Google Scholar 

  • Demlehner MP, Schaefer S, Grund C, Franke WW (1995) Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle. J Cell Biol 131:745–760

    CAS  PubMed  Google Scholar 

  • Duden R, Franke WW (1988) Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J Cell Biol 107:1049–1063

    CAS  PubMed  Google Scholar 

  • Duguay D, Foty RA, Steinberg MS (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 253:309–323

    CAS  PubMed  Google Scholar 

  • Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255–263

    CAS  PubMed  Google Scholar 

  • Franke WW, Heid H (1989) Desmosomal proteins and cytokeratins in the hair follicle. In: Rogers GE, Reis PJ, Ward KA, Marshall RC (eds) The biology of wool and hair. Chapman and Hall, London New York, pp 403–416

    Google Scholar 

  • Franke WW, Schmid E, Winter S, Osborn M, Weber K (1979) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res 123:25–46

    CAS  PubMed  Google Scholar 

  • Franke WW, Schumacher H, Borrmann CM, Grund C, Winter-Simanowski S, Schlechter T, Pieperhoff S, Hofmann I (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates. III. Assembly and disintegration of intercalated disks in rat cardiomyocytes growing in culture. Eur J Cell Biol 86:127–142

    CAS  PubMed  Google Scholar 

  • Godsel LM, Getsios S, Huen AC, Green KJ (2004) The molecular composition and function of desmosomes. In: Behrens J, Nelson WJ (eds) Cell adhesion. Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 137–193

    Google Scholar 

  • Goodwin M, Yap AS (2004) Classical cadherin adhesion molecules: coordinating cell adhesion, signaling and the cytoskeleton. J Mol Histol 35:839–844

    CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS, Herlyn M (2004) The role of altered cell-cell communication in melanoma progression. J Mol Histol 35:309–318

    CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18:150–159

    CAS  PubMed  Google Scholar 

  • Haemmerling B, Grund C, Boda-Heggemann J, Moll R, Franke WW (2006) The complexus adhaerens of mammalian lymphatic endothelia revisited: a junction even more complex than hitherto thought. Cell Tissue Res 324:55–67

    Google Scholar 

  • Hari L, Brault V, Kléber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L (2002) Lineage-specific requirements of β-catenin in neural crest development. J Cell Biol 159:867–880

    CAS  PubMed  Google Scholar 

  • Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320:447–449

    CAS  PubMed  Google Scholar 

  • Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148:779–790

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 98:8018–8023

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    CAS  PubMed  Google Scholar 

  • Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor RE, Hendrix MJ (2006) VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 5:228–233

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Pittet P, Smith-Clerc J, Chaponnier C, Meister JJ (2004) Myofibroblast development is characterized by specific cell-cell adherens junctions. Mol Biol Cell 15:4310–4320

    CAS  PubMed  Google Scholar 

  • Hsu MY, Wheelock MJ, Johnson KR, Herlyn M (1996) Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc 1:188–194

    CAS  PubMed  Google Scholar 

  • Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, Herlyn M (2000a) E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol 156:1515–1525

    CAS  PubMed  Google Scholar 

  • Hsu MY, Andl T, Li G, Meinkoth JL, Herlyn M (2000b) Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 113:1535–1542

    CAS  PubMed  Google Scholar 

  • Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S, Tsukita S (1993) The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 121:491–502

    CAS  PubMed  Google Scholar 

  • Itoh M, Morita K, Tsukita S (1999) Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 274:5981–5986

    CAS  PubMed  Google Scholar 

  • Jaggi M, Wheelock MJ, Johnson KR (2002) Differential displacement of classical cadherins by VE-cadherin. Cell Commun Adhes 9:103–115

    CAS  PubMed  Google Scholar 

  • Jamal S, Schneider RJ (2002) UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest 110:443–452

    CAS  PubMed  Google Scholar 

  • Jimbow K, Fitzpatrick TB, Quevedo WC Jr (1986) Formation, chemical composition and function of melanin pigments. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument 2. Springer, Berlin Heidelberg New York, pp 278–292

    Google Scholar 

  • Jouneau A, Yu YQ, Pasdar M, Larue L (2000) Plasticity of cadherin-catenin expression in the melanocyte lineage. Pigment Cell Res 13:260–272

    CAS  PubMed  Google Scholar 

  • Klingelhoefer J, Troyanovsky RB, Laur OY, Troyanovsky S (2000) Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions. J Cell Sci 113:2829–2836

    Google Scholar 

  • Koch PJ, Walsh MJ, Schmelz M, Goldschmidt MD, Zimbelmann R, Franke WW (1990) Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur J Cell Biol 53:1–12

    CAS  PubMed  Google Scholar 

  • Koch PJ, Goldschmidt MD, Walsh MJ, Zimbelmann R, Franke WW (1991) Complete amino acid sequence of the epidermal desmoglein precursor polypeptide and identification of a second type of desmoglein gene. Eur J Cell Biol 55:200–208

    CAS  PubMed  Google Scholar 

  • Koch PJ, Goldschmidt MD, Zimbelmann R, Troyanovsky R, Franke WW (1992) Complexity and expression patterns of the desmosomal cadherins. Proc Natl Acad Sci USA 89:353–357

    CAS  PubMed  Google Scholar 

  • Koeser J, Troyanovsky SM, Grund C, Franke WW (2003) De novo formation of desmosomes in cultured cells upon transfection of genes encoding specific desmosomal components. Exp Cell Res 285:114–130

    CAS  PubMed  Google Scholar 

  • Krengel S, Grotelueschen F, Bartsch S, Tronnier M (2004) Cadherin expression pattern in melanocytic tumors more likely depends on the melanocyte environment than on tumor cell progression. J Cutan Pathol 31:1–7

    PubMed  Google Scholar 

  • Kuphal S, Bosserhoff AK (2006) Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma. Oncogene 25:248–259

    CAS  PubMed  Google Scholar 

  • Kuphal S, Poser I, Jobin C, Hellerbrand C, Bosserhoff AK (2004) Loss of E-cadherin leads to upregulation of NFkappaB activity in malignant melanoma. Oncogene 23:8509–8519

    CAS  PubMed  Google Scholar 

  • Kurzen H, Moll I, Moll R, Schaefer S, Simics E, Amagai M, Wheelock MJ, Franke WW (1998) Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation 63:295–304

    CAS  PubMed  Google Scholar 

  • Kurzen H, Munzing I, Hartschuh W (2003) Expression of desmosomal proteins in squamous cell carcinomas of the skin. J Cutan Pathol 30:621–630

    PubMed  Google Scholar 

  • Lampugnani MG, Resnati M, Reiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522

    CAS  PubMed  Google Scholar 

  • Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW (2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 81:419–435

    CAS  PubMed  Google Scholar 

  • Langbein L, Pape UF, Grund C, Kuhn C, Praetzel S, Moll I, Moll R, Franke WW (2003) Tight junction-related structures in the absence of a lumen: occludin, claudins and tight junction plaque proteins in densely packed cell formations of stratified epithelia and squamous cell carcinomas. Eur J Cell Biol 82:385–400

    CAS  PubMed  Google Scholar 

  • Le Douarin N (1984) Pigment cells. In: Le Douarin N (ed) The neural crest. Cambridge University Press, Cambridge, pp 108–133

    Google Scholar 

  • Li G, Satyamoorthy K, Herlyn M (2001a) N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 61:3819–3825

    CAS  PubMed  Google Scholar 

  • Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M (2001b) Downregulation of E-cadherin and desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20:8125–8135

    CAS  PubMed  Google Scholar 

  • Li G, Fukunaga M, Herlyn M (2004) Reversal of melanocytic malignancy by keratinocytes is an E-cadherin-mediated process overriding beta-catenin signaling. Exp Cell Res 297:142–151

    CAS  PubMed  Google Scholar 

  • Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X, Herlyn M (2006) Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66:4182–4190

    CAS  PubMed  Google Scholar 

  • Luo Y, Radice GL (2005) N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol 169:29–34

    CAS  PubMed  Google Scholar 

  • Moll I, Kurzen H, Langbein L, Franke WW (1997) The distribution of the desmosomal protein, plakophilin 1, in human skin and skin tumors. J Invest Dermatol 108:139–146

    CAS  PubMed  Google Scholar 

  • Montagna W, Parakkal PF (1974) The structure and function of skin. Academic Press, New York London

    Google Scholar 

  • Moore R, Champeval D, Denat L, Tan SS, Faure F, Julien-Grille S, Larue L (2004) Involvement of cadherins 7 and 20 in mouse embryogenesis and melanocyte transformation. Oncogene 23:6726–6735

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takeichi M (1995) Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 121:1321–1332

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Takeichi M (1998) Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 125:2963–2971

    CAS  PubMed  Google Scholar 

  • Navarro P, Ruco L, Decana E (1998) Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140:1475–1484

    CAS  PubMed  Google Scholar 

  • Niehrs C, Huttner WB, Ruether U (1992) In vivo expression and stoichiometric sulfation of the artificial protein sulfophilin, a polymer of tyrosine sulfation sites. J Biol Chem 267:15938–15942

    CAS  PubMed  Google Scholar 

  • Niessen CM, Gumbiner BM (2002) Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J Cell Biol 156:389–399

    CAS  PubMed  Google Scholar 

  • Nishimura EK, Yoshida H, Kunisada T, Nishikawa SI (1999) Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Dev Biol 215:155–166

    CAS  PubMed  Google Scholar 

  • Omelchenko T, Fetisova E, Ivanova O, Bonder EM, Feder H, Vasiliev JM, Gelfand IM (2001) Contact interactions between epitheliocytes and fibroblasts: formation of heterotypic cadherin-containing adhesion sites is accompanied by local cytoskeletal reorganization. Proc Natl Acad Sci USA 98:8632–8637

    CAS  PubMed  Google Scholar 

  • Onken MD, Ehlers JP, Worley LA, Makita J, Yokota Y, Harbour JW (2006) Functional gene expression analysis uncovers phenotypic switch in aggressive uveal melanomas. Cancer Res 66:4602–4609

    CAS  PubMed  Google Scholar 

  • Paffenholz R, Kuhn C, Grund C, Stehr S, Franke WW (1999) The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp Cell Res 250:452–464

    CAS  PubMed  Google Scholar 

  • Patel SD, Chen CP, Bahna F, Honig B, Shapiro L (2003) Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr Opin Struct Biol 13:690–698

    CAS  PubMed  Google Scholar 

  • Peitsch WK, Grund C, Kuhn C, Schnoelzer M, Spring H, Schmelz M, Franke WW (1999) Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells. Eur J Cell Biol 78:767–778

    CAS  PubMed  Google Scholar 

  • Peitsch WK, Hofmann I, Praetzel S, Grund C, Kuhn C, Moll I, Langbein L, Franke WW (2001) Drebrin particles: components in the ensemble of proteins regulating actin dynamics of lamellipodia and filopodia. Eur J Cell Biol 80:567–579

    CAS  PubMed  Google Scholar 

  • Peitsch WK, Hofmann I, Bulkescher J, Hergt M, Spring H, Bleyl U, Goerdt S, Franke WW (2005) Drebrin, an actin-binding, cell-type characteristic protein: induction and localization in epithelial skin tumors and cultured keratinocytes. J Invest Dermatol 125:761–774

    CAS  PubMed  Google Scholar 

  • Perlis C, Herlyn M (2004) Recent advances in melanoma biology. Oncologist 9:182–187

    PubMed  Google Scholar 

  • Pieperhoff S, Schumacher H, Franke WW (2008) The area composita of adhering junctions connecting heart muscle cells of vertebrates. V. The importance of plakophilin-2 demonstrated by small interference RNA-mediated knockdown in cultured rat cardiomyocytes. Eur J Cell Biol 87:399–411

    CAS  PubMed  Google Scholar 

  • Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16:4386–4397

    CAS  PubMed  Google Scholar 

  • Qi J, Wang J, Romanyuk O, Siu CH (2006) Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol Biol Cell 17:1261–1272

    CAS  PubMed  Google Scholar 

  • Salomon D, Ayalon O, Patel-King R, Hynes RO, Geiger B (1992) Extrajunctional distribution of N-cadherin in cultured human endothelial cells. J Cell Sci 102:7–17

    CAS  PubMed  Google Scholar 

  • Sanders DS, Blessing K, Hassan GA, Bruton R, Marsden JR, Jankowski J (1999) Alterations in cadherin and catenin expression during the biological progression of melanocytic tumours. Mol Pathol 52:151–157

    Article  CAS  PubMed  Google Scholar 

  • Sandig M, Voura EB, Kalnins VI, Siu CH (1997) Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskeleton 38:351–364

    CAS  PubMed  Google Scholar 

  • Schaefer S, Koch PJ, Franke WW (1994) Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins. Exp Cell Res 211:391–399

    CAS  Google Scholar 

  • Schaefer S, Stumpp S, Franke WW (1996) Immunological identification and characterization of the desmosomal cadherin Dsg2 in coupled and uncoupled epithelial cells and in human tissues. Differentiation 60:99–108

    CAS  Google Scholar 

  • Schmitt CJ, Franke WW, Goerdt S, Falkowska-Hansen B, Rickelt S, Peitsch WK (2007) Homo- and heterotypic cell-cell contacts in malignant melanoma cells and desmoglein 2 as a novel solitary surface glycoprotein. J Invest Dermatol 127:2191–2206

    CAS  PubMed  Google Scholar 

  • Schulze C, Firth JA (1993) Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J Cell Sci 104:773–782

    PubMed  Google Scholar 

  • Seftor EA, Meltzer PS, Schatteman GC, Gruman LM, Hess AR, Kirschmann DA, Seftor RE, Hendrix MJ (2002) Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 44:17–27

    PubMed  Google Scholar 

  • Shan WS, Tanaka H, Phillips GR, Arndt K, Yoshida M, Colman DR, Shapiro L (2000) Functional cis-heterodimers of N- and R-cadherins. J Cell Biol 148:579–590

    CAS  PubMed  Google Scholar 

  • Shimoyama Y, Tsujimoto G, Kitajima M, Natori M (2000) Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem J 349:159–167

    CAS  PubMed  Google Scholar 

  • Silye R, Karayiannakis AJ, Syrigos KN, Poole S, Noorden S van, Batchelor W, Regele H, Sega W, Boesmueller H, Krausz T, Pignatelli M (1998) E-cadherin/catenin complex in benign and malignant melanocytic lesions. J Pathol 186:350–355

    CAS  PubMed  Google Scholar 

  • Simonneau L, Kitagawa M, Suzuki S, Thiery JP (1995) Cadherin 11 expression marks the mesenchymal phenotype: towards new functions for cadherins? Cell Adhes Commun 3:115–130

    CAS  PubMed  Google Scholar 

  • Smalley KS, Brafford P, Haass NK, Brandner JM, Brown E, Herlyn M (2005) Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am J Pathol 166:1541–1554

    CAS  PubMed  Google Scholar 

  • Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA (1994) E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 107:983–992

    CAS  PubMed  Google Scholar 

  • Troyanovsky S (2005) Cadherin dimers in cell-cell adhesion. Eur J Cell Biol 84:225–233

    CAS  PubMed  Google Scholar 

  • Van Marck V, Stove C, Van Den Bossche K, Stove V, Paredes J, Vander Haeghen Y, Bracke M (2005) P-cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res 65:8774–8783

    PubMed  Google Scholar 

  • Volk T, Cohen O, Geiger B (1987) Formation of heterotypic adherens-type junctions between L-CAM-containing liver cells and A-CAM-containing lens cells. Cell 50:987–994

    CAS  PubMed  Google Scholar 

  • Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Ho AD, Franke WW (2007) Processus adhaerentes: giant cell processes studded with special adherens junctions attract and connect mesenchymal stem cells. Cell Tissue Res 328:499–514

    PubMed  Google Scholar 

  • Yin T, Green KJ (2004) Regulation of desmosome assembly and adhesion. Semin Cell Dev Biol 15:665–677

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Martina Schnoelzer and Tore Kempf (Protein Analysis Facility, German Cancer Research Center) for performing the MALDI-TOF analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke K. Peitsch.

Additional information

This work was supported in parts by grants from the Deutsche Forschungsgemeinschaft to W. K. Peitsch (project PE 896/1) and the Deutsche Krebshilfe to W. W. Franke (project 10-2049).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Survey of the results of the tissue microarrays of human melanomas and nevi: clinical data and detailed immunofluorescence microscopical results ( few or no reactive tumor cells, + 5%–24% reactive cells, ++ 25%–49% reactive cells, +++ 50%–74% reactive cells, ++++ more than 75% reactive cells, n.d. not done) (DOC 161 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rickelt, S., Franke, W.W., Doerflinger, Y. et al. Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 334, 401–422 (2008). https://doi.org/10.1007/s00441-008-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0704-7

Keywords

Navigation