Skip to main content

Somatic Embryogenesis in Cocos nucifera L.

  • Chapter
  • First Online:
Somatic Embryogenesis: Fundamental Aspects and Applications

Abstract

In our coconut laboratory micropropagation has been the subject of research for nearly three decades, as this plant species is highly recalcitrant for in vitro regeneration and so far only achieved through somatic embryogenesis as the sole path for coconut regeneration. Of all the explants tested, plumules have proved to be the most responsive and the process efficiency has been improved by indirect embryogenesis and thereafter secondary embryogenesis and callus multiplication, this strategy is currently applied in floral explants. Two different approaches have been used to find ways to have a more efficient protocol. The first one, a direct and practical method, included plant hormones and activated charcoal. On the other hand, the indirect approach consisted in basic studies on: morphohistological development, biochemical and physiological aspects such as uptake of exogenous auxin, levels of endogenous auxin; shoot apical meristem formation and maintenance (KNOX gene family); the occurrence and expression of genes related to the cell cycle control (Cyclin-Dependent Kinase), and somatic embryogenesis (Somatic Embryogenesis-Related Kinase); and the establishment of a transformation protocol. A better understanding of the somatic embryogenesis of coconut was achieved by these approaches. This way, in the short term there is no doubt that we will have mass propagation options based not only in plumule explants but also on rachillae, unfertilized ovary, and leaf explants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adkins SW, Samosir YMS, Godwin ID (1999) Control of environmental conditions and the use of polyamines can optimise the conditions for the initiation and proliferation of coconut somatic embryos. In: Oropeza C, Verdeil J-L, Ashburner GR et al (eds). Current Advances in Coconut Biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 321–340. doi:10.1007/978-94-015-9283-3_24

    Google Scholar 

  • Andrade-Torres A, Oropeza C, Sáenz L et al (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera L. Biologia 66(5):790–800. doi:10.2478/s11756-011-0104-4

    Article  CAS  Google Scholar 

  • Apavatjrut P, Blake J (1977) Tissue culture of stem explants of coconut (Cocos nucifera L). Olagineux 32:267–271

    CAS  Google Scholar 

  • Azpeitia A, Chan JL, Sáenz L, Oropeza C (2003) Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) Cultured in vitro. J Hort Sci Biotech 78:591–596. doi:10.1080/14620316.2003.11511669

    CAS  Google Scholar 

  • Belmonte MF, Tahir M, Schroeder D, Stasolla C (2007) Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J Exp Bot 58:2851–2861. doi:10.1093/jxb/erm099

    Article  CAS  PubMed  Google Scholar 

  • Bhalla-Sarin B, Bagga S, Sopory SK, Guha-Mukherjee S (1986) Induction and differentiation of callus from embryos of Cocos nucifera L. by IAA-conjugates. Plant Cell Rep 5:322–324. doi:10.1007/BF00268591

    Article  CAS  PubMed  Google Scholar 

  • Blake J (1990). Coconut (Cocos nucifera L.): Micropropagation. In: Bajaj YPS (ed). Legumes and Oilseed Crops I. Biotechnology in Agriculture and Foresty, vol 10. Springer-Verlag, Berlin, pp 538–554. doi:10.1007/978-3-642-74448-8_26

    Google Scholar 

  • Blake J, Hornung R (1995) Somatic embryogenesis in coconut (Cocos nucifera L.) In: Jain S, Gupta P, Newton R (eds). Somatic Embryogenesis in Woody Plants, vol 2. Kluwer Academic Publishers Dordrecht, pp 327–340. doi:10.1007/978-94-011-0491-3_18

    Google Scholar 

  • Brackpool A, Branton R, Blake J (1986) Regeneration in palms. In: Vasil I (ed). Cell Culture and Somatic Cell Genetic of plants, vol 3. New York, Academic Press, pp 207–222

    Google Scholar 

  • Buffard-Morel J, Verdeil J-L, Pannetier C (1988) Vegetative propagation of coconut palm through somatic embryogenesis, obtention of plantlet from leaf explant. In: Durand G, Bobichon L, Florent J (eds) Proceedings of the 8th international biotechnology symposium. Société Francaise de Microbiologie, Paris

    Google Scholar 

  • Buffard-Morel J, Verdeil J-L, Pannetier C (1992) Embryogénèse somatique du cocotier (Cocos nucifera L.) à partir de tisus foliaires: étude histologique. Can J Bot 70:735–741. doi:10.1139/b92-094

    Article  Google Scholar 

  • Centeno ML, Rodriguez R, Berros B, Rodriguez A (1997) Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L cotyledons. Plant Cell Rep 17:139–144. doi:10.1007/s002990050367

    Article  CAS  Google Scholar 

  • Chan JL, Sáenz L, Talavera C et al (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521. doi:10.1007/s002990050434

    Article  CAS  Google Scholar 

  • Chuc-Armendariz BH, Oropeza C, Chan JL et al (2006) Pollen fertility and female flower anatomy of micropropagated coconut palms. Rev Fitotec Mex 29:373–378

    Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 86:715–730

    Google Scholar 

  • Davies PJ (1995) Plant hormones: their nature, occurrence and function. In: Davies PJ (ed). Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 1–12. doi:10.1007/978-1-4020-2686-7_1

    Google Scholar 

  • Dussert S, Verdeil J-L, Rivel A et al (1995) Nutrient uptake and growth of in vitro coconut (Cocos nucifera L.) calluses. Plant Sci 106:185–193. doi:10.1016/0168-9452(95)04079-A

    Article  CAS  Google Scholar 

  • Ebert A, Taylor HF (1990) Assessment of the changes of 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tiss Org 20:165–172. doi:10.1007/BF00041877

    CAS  Google Scholar 

  • Ebert A, Taylor HF, Blake J (1993) Changes of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tiss Org 33:157–162. doi:10.1007/BF01983229

    Article  CAS  Google Scholar 

  • Eden-Green SJ (1997) History and world distribution of lethal yellowing-like diseases of palms. In: Eden-Green SJ, Ofori F (eds). Proceeding of an international workshop on lethal yellowing diseases of coconut, elmina, ghana, November, 1995. Natural Resources Institute, Chatham, UK, pp 9–25

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cell to an embryogenic state. Plant Cell Tiss Org 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Ferreira E, Contin M, Yoshimitsu S (2010) Anatomy, histochemistry and ultrastructure of seed and somatic embryo of Acrocomia aculeata (Arecaceae). Scientia Agricola 67:399–407. doi:10.1590/S0103-90162010000400004

    Article  Google Scholar 

  • Fernando SC, Verdeil JL, Hocher V et al (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera. Plant Cell Tiss Org 72:281–284. doi:10.1023/A:1022345011002

    Article  Google Scholar 

  • Fisher JB, Tsai JH (1978) In vitro growth of embryos and callus of coconut palm. In vitro 14:307–311. doi:10.1007/BF02616041

    Article  CAS  PubMed  Google Scholar 

  • Foale M (2005) An introduction to the coconut palm. In: Batugal P, Ramanatha V, Rao GP, Oliver J (eds) Coconut genetic resources. International plant genetic resources institute—regional office for Asia, the pacific and oceania (IPGRI-APO), Serdang, Selangor DE, Malaysia, pp 1–8

    Google Scholar 

  • Fulford RM, Passey AJ, Justin HGW (1981) Coconut propagation in vitro. Rep of the East Malling Res Stn., pp 1–12

    Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb

    Article  CAS  Google Scholar 

  • Hanold D, Randles JW (1991) Detection of coconut cadang-cadang viroid-like sequences in oil and coconut palm and other monocotyledons in the south-west Pacific. Ann Appl Biol 118:139–151. doi:10.1111/j.1744-7348.1991.tb06092.x

    Article  Google Scholar 

  • Harrison NA, Oropeza C (2008) Phytoplasmas associated with coconut lethal yellowing. In: Harrison NA, Rao GP, Marcone C (eds) Characterization, diagnosis and management of phytoplasmas. Studium Press LLC, Houston, USA p, pp 219–248

    Google Scholar 

  • Hecht V, Vielle-Calzada J-P, Hartog MV et al (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 Gene is expressed in developing ovules and embryos and embryo and enhances embryogenic competence in culture. Plant Physiol 127:803–816. doi:10.1104/pp.010324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemerly AS, Ferreira PJE, Van Montagu M et al (1993) cdc2a expression in Arabidopsis is linked with the competence for cell division. Plant Cell 5:1711–1723. doi:10.1105/tpc.5.12.1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islas-Flores I, Chan JL, Oropeza C, Hernández-Sotomayor MT (2000) Ocurrence of phosphorylated proteins and kinase activity in coconut tissue cultured in vitro in a medium that induces somatic embryogenesis. Plant Physiol Biochem 38:825–836. doi:10.1016/S0981-9428(00)01197-9

    Article  CAS  Google Scholar 

  • Karunaratne S, Gamage C, Kovoor A (1991) Leaf maturity, a critical factor in embryogenesis. J Plant Physiol 139:27–31. doi:10.1016/S0176-1617(11)80159-8

    Article  Google Scholar 

  • Karunaratne S, Periyapperuma K (1989) Culture of immature embryos of coconut (Cocos nucifera L.): callus proliferation and somatic embryogenesis. Plant Sci 62:247–253. doi:10.1016/0168-9452(89)90087-3

    Article  Google Scholar 

  • Krikorian D (1995) Hormones in tissue culture and micropropagation In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers. London, pp 774–798. doi:10.1007/978-94-011-0473-9_35

    Google Scholar 

  • Kumar PP, Raju CR, Chandramoham M, Iver RD (1985) Induction and maintenance of friable callus from the cellular endosperm of Cocos nucifera L. Plant Sci 40:203–207. doi:10.1016/0168-9452(85)90204-3

    Article  CAS  Google Scholar 

  • Lao DA (2008) Coco-biodiesel more than a diesel replacement. Bioenergy Forum, Bangkok, April 2008

    Google Scholar 

  • Lao DA (2009) Coco-biodiesel in the Philippines. In: Coconut Philippines published by Asia Outsourcing

    Google Scholar 

  • Magnaval C, Noirot M, Verdeil J-L et al (1995) Free amino acid composition of coconut (Cocos nucifera) calli under somatic embryogenesis induction condition. J Plant Physiol 146:155–161. doi:10.1016/S0176-1617(11)81982-6

    Article  CAS  Google Scholar 

  • Martinez MC, Jorgensen JE, Lawton MA et al (1992) Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci (USA) 89:7360–7364. doi:10.1073/pnas.89.16.7360

    Article  CAS  Google Scholar 

  • Mohamed-Yaseen Y (2001) Influence of agar and activated charcoal on uptake of gibberellin and plant morphogenesis in vitro. In vitro Cell Dev-Pl 37:204–205. doi:10.1007/s11627-001-0035-9

    Article  Google Scholar 

  • Montero-Cortés M, Rodríguez-Paredes F, Burgeff C et al (2010a) Characterisation of a Cyclin-Dependent Kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Org 102:251–258. doi:10.1007/s11240-010-9714-8

    Article  CAS  Google Scholar 

  • Montero-Cortés M, Sáenz L, Córdova I et al (2010b) GA3 stimulate the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29:1049–1059. doi:10.1007/s00299-010-0890-0

    Article  CAS  PubMed  Google Scholar 

  • Oropeza C and Taylor HF (1994) Uptake of 2,4-D in coconut (Cocos nucifera L.) explant. In: Lumsden PJ, Nicholas JR, Davies WJ (eds). Physiology, growth and development of plant in culture. Kluwer Academics Publishers, The Netherlands, pp 284–288. doi:10.1007/978-94-011-0790-7_31

    Google Scholar 

  • Pan MJ, van Standen (1998) The use of charcoal in in vitro culture—A review. Plant Growth Reg 26:155–163. doi:10.1023/A:1006119015972

    Google Scholar 

  • Perera PIP, Hocher V, Verdeil JLLK et al (2007) Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep 26:21–28. doi:10.1007/s00299-006-0216-4

    Article  CAS  PubMed  Google Scholar 

  • Perera PIP, Perera L, Hocher V et al (2008) Use of SSR markers to determine the anther-derived homozygous lines in coconut. Plant Cell Rep 27:1697–1703. doi:10.1007/s00299-008-0592-z

    Article  CAS  PubMed  Google Scholar 

  • Perera PIP, Yakandawala DMD, Hocher V et al (2009) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tiss Org 96:171–180. doi:10.1007/s11240-008-9473-y

    Article  CAS  Google Scholar 

  • Pérez-Nuñez M, Chan JL, Sáenz L et al (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev-Pl 42:37–43. doi:10.1079/IVP2005722

    Article  Google Scholar 

  • Pérez-Nuñez M, Souza R, Sáenz L et al (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19. doi:10.1007/s00299-008-0616-8

    Article  CAS  PubMed  Google Scholar 

  • Planchais S, Glab N, Inzé D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83. doi:10.1016/S0014-5793(00)01675-6

    Article  CAS  PubMed  Google Scholar 

  • Rajesh MK, Radha E, Sajini KK, Karun A (2014) Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian J Agr Sci 84(4):527–530

    Google Scholar 

  • Rajesh MK, Fayas TP, Naganeeswaran S et al (2015) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma DOI 10.1007/s00709-015-0856-8

  • Sáenz L, Souza R, Chan JL et al (2005) 14C-2,4-dichlorophenoxyacetic acid uptake and formation of embryogenic calli in coconut plumular explants cultured in activated charcoal-free media. Rev Fitotec Mex 28:151–159

    Google Scholar 

  • Sáenz L, Azpeitia A, Chuc-Armendariz B et al (2006) Morphological and histological changes during somatic embryo formation from coconut plumule explant. In Vitro Cell Dev-Pl 42:19–25. doi:10.1079/IVP2005728

    Article  Google Scholar 

  • Sáenz L, Herrera-Herrera G, Uicab-Ballote F et al (2010a) Influence of form of activated charcoal on embryogenic callus formation in coconut (Cocos nucifera). Plant Cell Tiss Org 100:301–308. doi:10.1007/s11240-009-9651-6

    Article  Google Scholar 

  • Sáenz L, Azpeitia A, Oropeza C et al (2010b) Endogenous cytokinins in Cocos nucifera L. in vitro cultures obtained from plumular explants. Plant Cell Rep 29:1227–1234. doi:10.1007/s00299-010-0906-9

    Article  CAS  PubMed  Google Scholar 

  • Samosir YMS, Godwin ID, Adkins SW (1999) The use of osmotically active agents and abscisic acid can optimize the maturation of coconut somatic embyos. In: Oropeza C, Verdeil J-L, Ashburner GR, Cardeña R, Santamaría J (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 341–354. doi:10.1007/978-94-015-9283-3_25

    Google Scholar 

  • Sandoval A, Hocher V, Verdeil J-L (2003) Flow cytometric analysis of the cell cycle in different coconut palm (Cocos nucifera L.) tissues cultured in vitro. Plant Cell Rep 22:25–31. doi:10.1007/s00299-003-0651-4

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cell competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Somleva M, Kapchina V, Alexieva V, Golovinsky E (1995) Anticytokinin effects on in vitro response of embryogenic and non-embryogenic genotypes of Dactylis glomerata L. Plant Growth Regul 16:109–112. doi:10.1007/BF00029530

    Article  CAS  Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108:1463–1475. doi:10.1093/aob/mcr033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Winkle S, Pullman GS (2003) The combined impact of pH and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 22:303–311. doi:10.1007/s00299-003-0686-6

    Article  CAS  PubMed  Google Scholar 

  • Verdeil J-L, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep 13:218–221. doi:10.1007/BF00239896

    CAS  PubMed  Google Scholar 

  • Verdeil J-L, Hocher V, Huet C et al (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18. doi:10.1006/anbo.2001.1408

    Article  Google Scholar 

  • Weatherhead MA, Burdon J, Henshaw GG (1978) Some effects of activated charcoal as an additive of plant tissue culture medium. Z Pflanzenphysiol 94:399–406. doi:10.1016/S0044-328X(78)80054-3

    Article  Google Scholar 

  • Wenck AR, Conger BV, Trigiano RN, Sams CE (1988) Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins. Plant Physiol 88:990–992. doi:10.1104/pp.88.4.990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung EC (1995) Structural and Developmental Patterns in Somatic Embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers. Dordrecht, pp 205–247. doi:10.1007/978-94-011-0485-2_6

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank V. Hocher and J-L. Verdeil IRD/CIRAD Montpellier, France, respectively, where the isolation of CnCDKA and CnKNOX were carried out and M. Strnad for the analysis of cytokinin content (Institute Experimental Botany, Czech Republic). Partial funding of the research reported here was from CONACyT, México (Grant no. 43834-Z) and a scholarship was awarded to T. Pérez-Nuñez (No. 162930), M. Montero-Cortés (No. 183253), A. Azpeitia (No. 119335), A. Andrade-Torres (No. 204774). G. Rivera-Solís (No. 242979). G. Sandoval-Cancino (No. 300614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Oropeza-Salín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sáenz-Carbonell, L. et al. (2016). Somatic Embryogenesis in Cocos nucifera L.. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Somatic Embryogenesis: Fundamental Aspects and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33705-0_18

Download citation

Publish with us

Policies and ethics