Skip to main content
Log in

A new crystallization process in polypropylene highly filled with calcium carbonate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of high amounts of calcium carbonate filler on the crystallization behavior of polypropylene (PP) is investigated by differential scanning calorimetry (DSC) and fast scanning DSC measurements. The non-isothermal crystallization process at industrially relevant cooling rates of about 100 K/s is significantly influenced by the calcium carbonate filler. Isothermal crystallization measurements indicate a new crystallization process in the temperature range between 45 and 80 °C caused by the filler content. To find an explanation for the origin of this process, we have analyzed the interaction between polymer and filler, the crystalline structure, and the crystallization kinetics. From the experimental results, we conclude that the newly observed crystallization process is governed by an additional nucleation process for the growth of α-phase crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Silvestre C, Cimmino S, Duraccio D, Schick C (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:871–881

    Article  Google Scholar 

  2. van Drongelen M, van Erp TB, Peters GWM (2012) Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer 53:4758–4769

    Article  Google Scholar 

  3. Natta G, Corradini P (1960) Structure properties of isotactic polypropylene. Nuovo Cimento Suppl 15:40–51

    Article  CAS  Google Scholar 

  4. Corradini P, Petraccone V, DeRosa C, Guerra G (1986) On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules 19:2699–2703

    Article  CAS  Google Scholar 

  5. Grebowicz J, Lau SF, Wunderlich B (1984) The thermal properties of polypropylene. J Polym Sci Polym Symp 71:19–37

    Article  CAS  Google Scholar 

  6. Konishi T, Nishida K, Kanaya T (2006) Crystallization of isotactic polypropylene from prequenched mesomorphic phase. Macromolecules 39:8035–8040

    Article  CAS  Google Scholar 

  7. Piccarolo S (1992) Morphological change in isotactic polypropylene as a function of cooling rate. J Macromol Sci Phys B31:501–511

    Article  Google Scholar 

  8. Mileva D, Androsch R, Radusch HJ (2009) Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polymer Bull 62:561–571

    Article  CAS  Google Scholar 

  9. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662

    Article  CAS  Google Scholar 

  10. Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  11. Mezghani K, Phillips PJ (1997) The γ-phase of high molecular weight isotactic polypropylene. II: The morphology of the γ-form crystallized at 200 MPa. Polymer 38:5725–5733

    Article  CAS  Google Scholar 

  12. Lotz B, Graff S, Wittmann JC, Crystal morphology of the γ (triclinic) phase of isotactic polypropylene and its relation to the α phase. J Poly Sci Part B Polym Phys 24: 2017–2032

  13. Foresta T, Piccarolo S, Goldbeck-Wood G (2001) Competition between α and γ phases in isotactic polypropylene: effect of ethylene content and nucleating agent at different cooling rates. Polymer 42:1167–1176

    Article  CAS  Google Scholar 

  14. Lamberti G (2014) Flow induced crystallization of polymers. Chem Soc Rev 43:2240–2252

    Article  CAS  Google Scholar 

  15. Lamberti G, DeSantis F, Brucato V, Titomanlio G (2004) Modelling the interactions between light and crystallizing during fast cooling. Appl Phys A 78:895–901

    Article  CAS  Google Scholar 

  16. De Santis F, Lamberti G, Peters GWM, Brucato V (2005) Improved experimental characterization of crystallization kinetics. Eur Polym J 41:2297–2302

    Article  Google Scholar 

  17. Lamberti G (2011) Isotactic polypropylene crystallization: analysis and modelling. Eur Polym J 47:1097–1112

    Article  CAS  Google Scholar 

  18. Schawe JEK (2014) Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Thermal Anal Calorim 116:1165–1173

    Article  CAS  Google Scholar 

  19. Schawe JEK (2015) Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC. Thermochim Acta 603:85–93

    Article  CAS  Google Scholar 

  20. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  Google Scholar 

  21. De Santis F, Adamovsky S, Titomanlio G, Schick C (2007) Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules 40:9026–9031

    Article  Google Scholar 

  22. Konishi T, Nishida K, Kanaya T (2006) Crystallization of isotactic polypropylene from prequenched mesomorphic phase. Macromolecules 39:8035–8040

    Article  CAS  Google Scholar 

  23. Zia Q, Androsch R, Radusch H-J, Piccarolo S (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  CAS  Google Scholar 

  24. Koutsky JA, Walton AG, Bear E (1967) Nucleation in polymer droplets. J Appl Phys 38:1832–1838

    Article  CAS  Google Scholar 

  25. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polym J 49:1057–1065

    Article  CAS  Google Scholar 

  26. Meng M-R, Dou Q (2009) Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites. J Macromol Sci Part B Phys 48:213–225

    Article  CAS  Google Scholar 

  27. Ren Z, Shanks RA, Rook TJ (2001) Crystallization and melting of highly filled polypropylene composites prepared with surface-treated fillers. J Appl Polym Sci 79:1942–1948

    Article  CAS  Google Scholar 

  28. Kowalewski T, Galeski A (1986) Influence of chalk and its surface treatment on crystallization of filled polypropylene. J Appl Polym Sci 32:2919–2934

    Article  CAS  Google Scholar 

  29. Rybnikář F (1991) Interactions in the system isotactic polypropylene–calcite. J Appl Polym Sci 42:2727–2737

    Article  Google Scholar 

  30. Avella M, Cosco S, Di Lorenzo ML, Di Pace E, Errico ME, Gentile G (2006) Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating. Eur Polym J 42:1548–1557

    Article  CAS  Google Scholar 

  31. McGenity PM, Hooper JJ, Paynter CD, Riley AM, Nutbeem C, Elton NJ, Adams JM (1992) Nucleation and crystallization of polypropylene by mineral fillers: relationship to impact strength. Polymer 33:5215–5224

    Article  CAS  Google Scholar 

  32. Labour T, Gauthier C, Séguéla R, Vigier G, Bomal Y, Orange G (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer 42:7127–7135

    Article  CAS  Google Scholar 

  33. Schawe JEK (2012) Practical aspects of the Flash DSC 1: sample preparation for measurements of polymers. Mettler Toledo Thermal Analysis User Com 36: 17–24, www.mt.com/ta-usercoms

  34. Mathot V, Pyda M, Pijpers T, Van den Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  CAS  Google Scholar 

  35. Alfonso GC, Ziabicki A (1995) Memory effects in isothermal crystallization II. Isotactic polypropylene. Colloid Polym Sci 273:317–323

    Article  CAS  Google Scholar 

  36. Wunderlich B (1976) Macromolecular physics vol. 2. Academic, New York

    Google Scholar 

  37. Sawada K, Ishida Y (1975) Dielectric study of crystallization in poly(ethylene terephthalate). J Polym Sci Polym Phys Ed 13:2247–2250

    Article  CAS  Google Scholar 

  38. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glasses on cooling rate. J Amer Ceram Soc 59:12–16

    Article  CAS  Google Scholar 

  39. Schawe JEK (1998) Description of thermal relaxation of polystyrene close to the glass transition. J Polym Sci Part B Polym Phys 36:2165–2175

    Article  CAS  Google Scholar 

  40. Schawe JEK (2007) An analysis of the meta stable structure of poly(ethylene terephthalate) by conventional DSC. Thermochim Acta 461:145–152

    Article  CAS  Google Scholar 

  41. Schawe JEK (2015) Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim Acta 603:128–134

    Article  CAS  Google Scholar 

  42. Kim KJ, White JL (1999) X-ray absorption, particle orientation, and rheological behavior of talc-calcite mixed-particle compounds in a polystyrene matrix. J Polym Sci Part B Polym Phys 37:1787–1802

    Article  CAS  Google Scholar 

  43. Duran H, Steinhart M, Butt H-J, Floudas G (2011) From heterogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett 11:1671–1675

    Article  CAS  Google Scholar 

  44. Ibarretxe J, Groeninckx G, Bremer L, Mathot VBF (2009) Quantitative evaluation of fractionated and homogeneous nucleation of polydisperse distributions of water-dispersed maleic anhydride-grafted polypropylene micro- and nano-sized droplets. Polymer 50:4584–4595

    Article  CAS  Google Scholar 

  45. Jin Y, Hilltner A, Baer E (2007) Effect of sorbitol nucleating agent on fractionated crystallization of polypropylene droplets. J Polym Sci Part B Polym Phys 45:1788–1297

    Article  CAS  Google Scholar 

  46. Kelton KF (1993) Numerical model for isothermal and non-isothermal crystallization of liquids and glasses. J Non-Cryst Solids 163:183–296

    Article  Google Scholar 

  47. Pineda E, Crespo D (2003) Microstructural implications of non-random nucleation protocols in nanocrystallized metallic glasses. J Non-Cryst Solids 317:85–90

    Article  CAS  Google Scholar 

  48. Galeski A, Pracella M, Martuscelli E (1984) Polypropylene spherulite morphology and growth rate change in blends with low-density polyethylene. J Polym Sci Polym Phys Ed 22:739–747

    Article  CAS  Google Scholar 

  49. Bartczak Z, Galeski A, Pracella M (1986) Spherulite nucleation in blends of isotactic polypropylene with high-density polyethylene. Polymer 27:537–543

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Regina Strässle (KATZ, Aarau) for providing the samples and Michael Knerr (Omya International AG, Oftringen, Switzerland) for helpful discussion. The work of P.A. Vermeulen was in part supported by the EU through the Erasmus Lifelong Learning Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen E. K. Schawe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schawe, J.E.K., Vermeulen, P.A. & van Drongelen, M. A new crystallization process in polypropylene highly filled with calcium carbonate. Colloid Polym Sci 293, 1607–1614 (2015). https://doi.org/10.1007/s00396-015-3571-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3571-2

Keywords

Navigation