Skip to main content
Log in

Influence of processing conditions on polymer crystallization measured by fast scanning DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structural formation of polymers during processing significantly influences the mechanical properties and the temperature stability of polymer products. The analysis of structural formation by conventional thermal analysis techniques is limited because of the relatively low scanning rates. Thus, reorganization during heating changes the initial structure, and the applicable cooling rates are not representative for the applied cooling rates during production, i.e., crystallization at high supercooling cannot be investigated. To overcome these limitations, chip calorimeters with very high scanning rates have been developed. The fast scanning Flash DSC 1 based on MEMS chip-sensors allows for scanning rates up to 40,000 K s−1. In this paper, we discuss some basic concepts of chip calorimetry in general. We then study the influence of additives and molecular modifications on the structural formation at technically relevant cooling rates. This information is crucial to adapt polymer formulation and processing conditions to specific product requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wunderlich B. The ATHAS database on heat capacity of polymers. Pure App Chem. 1995;67:1019–26.

    Google Scholar 

  2. Alsleben M, Schick C. The melting of polymers: a three-phase approach. Thermochim Acta. 1994;238:203–27.

    Article  CAS  Google Scholar 

  3. Janeschitz-Kriegl H. Crystallization modalities in polymer melt processing. Wien: Springer-Verlag; 2010.

    Book  Google Scholar 

  4. Wunderlich B. Macromoleculare Physics Vol. 1and Vol. 3. New-York: Academic Press; 1973 and 1980.

  5. Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberger RL, van der Vegte EW. High-speed calorimetry for the study of the kinetics of (De)vitrification, crystallization, and melting of macromolecules. Macromolecules. 2002;35:3601–13.

    Article  CAS  Google Scholar 

  6. Mathot VBF, Goderis B, Reynaers H. Metastability in polymer systems studied under extreme conditions: high pressure, scan-iso T-t ramps and high scanning rates. Fiber Text East Eur. 2003;11(40):20–7.

    Google Scholar 

  7. Schawe JEK. An analysis of the meta stable structure of poly(ethylene terephthalate) by conventional DSC. Thermochim Acta. 2007;461:145–52.

    Article  CAS  Google Scholar 

  8. Minakov AA, Mordvintsev DA, Schick C. Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K s−1). Polymer. 2004;45:3755–63.

    Article  CAS  Google Scholar 

  9. Adamovsky SA, Minakov AA, Schick C. Scanning microcalorimetry at high cooling rates. Thermochim Acta. 2003;403:55–63.

    Article  CAS  Google Scholar 

  10. De Santis F, Adamovsky SA, Titomanlio G, Schick C. Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules. 2006;39:2562–7.

    Article  Google Scholar 

  11. Wunderlich B. Termination of crystallization or ordering of flexible, linear molecules. J Thermal Anal Calorim. 2012;109:1117–32.

    Article  CAS  Google Scholar 

  12. van Herwaarden AW. Overwiew of calorimeter chips for various applications. Thermochim Acta. 2005;432:192–201.

    Article  Google Scholar 

  13. Neff D, Schawe J. Kunststoffanalytik für Materialien der Zukunft. Plastverarbeiter. 2011;09:70–1.

    Google Scholar 

  14. Mathot V, Pyda M, Pijpers T, Van den Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 2011;522:36–45.

    Article  CAS  Google Scholar 

  15. Schawe J. Practical aspects of the Flash DSC 1: Sample prepataion for measurements of polymers. Mettler Toledo Thermal Analysis UserCom. 2012; 36: 17-24. http://ch.mt.com/ch/en/home/supportive_content/usercom/TA_UserCom36.html.

  16. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer. 2010;51:4639–62.

    Article  CAS  Google Scholar 

  17. Silvestre C, Cimmino S, Duraccio D, Schick C. Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun. 2007;28:875–81.

    Article  CAS  Google Scholar 

  18. De Santis F, Adamovsky S, Titomanlio G, Schick C. Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules. 2007;40:9026–31.

    Article  Google Scholar 

  19. Wang X, Liu R, Wu M, Wang Z, Huang Y. Effect of chain disentanglement on melt crystallization behavior of isotactic polypropylene. Polymer. 2009;50:2827–5824.

    Google Scholar 

  20. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, DiLorenzo ML, Schick C, Wunderlich B. Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci Part B. 2006;44:1364–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to his colleagues at Elke Hempel for providing the measurements on PBT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. K. Schawe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schawe, J.E.K. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim 116, 1165–1173 (2014). https://doi.org/10.1007/s10973-013-3563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3563-8

Keywords

Navigation