Skip to main content

Antimicrobial Peptides Produced by Bacteria: The Bacteriocins

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth

Abstract

Bacteriocins are the subset of antimicrobial peptides (AMPs) produced by bacteria. They are small amphipathic peptides that interact with bacterial membranes leading to cell death. Most of the best known are produced by lactic acid bacteria used as food fermentation starters, because of their potential use as food preservatives. Bacteriocins are divided into two groups: lantibiotics that present posttranslational condensation rings and unmodified peptides. The first are subdivided into elongated versus globular lantibiotics, while four subgroups are recognized among unmodified bacteriocins. The genetic organization is in clusters that may reside into plasmids or transposons, formed by the structural gene, the export and immunity determinants, the quorum sensing governing production and any modification genes. Bacteriocins are active at extremely low concentrations (nM range) due to a dual mode of action: (a) binding to the membrane phospholipids and (b) specific recognition of surface components, both of which collaborate in pore formation. Development of resistance to bacteriocins is very infrequent due to the presence of two targets and is usually due to unspecific modifications of the cell envelope. Bacteriocins are used as food preservatives, either after total or partial purification or as extracts of producing bacteria. In situ production is also used, with the advantage of producing early lysis of the starter bacteria and ripening acceleration of the fermented product. They may also form part of hurdle technologies and be incorporated into packaging systems to allow extended liberation. Medical and veterinary applications are in their infancy but good results have been obtained against infection by Gram-positive bacteria and Helicobacter pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allende A, Martínez B, Selma V, Gil MI, Suárez JE, Rodríguez A (2007) Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiol 24:759–766

    Article  CAS  PubMed  Google Scholar 

  • Altena K, Guder A, Cramer C, Bierbaum G (2000) Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66:2565–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroutcheva AA, Simoes JA, Faro S (2001) Antimicrobial protein produced by vaginal Lactobacillus acidophilus that inhibits Gardnerella vaginalis. Infect Dis Obstet Gynecol 9:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arqués JL, Rodríguez E, Gaya P, Medina M, Núñez M (2005) Effect of combinations of high-pressure treatment and bacteriocin-producing lactic acid bacteria on the survival of Listeria monocytogenes in raw milk cheese. Int Dairy J 15:893–900

    Article  CAS  Google Scholar 

  • Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107:475–487

    Article  CAS  PubMed  Google Scholar 

  • Audisio MC, Oliver G, Apella MC (2000) Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J Food Prot 63:1333–1337

    Google Scholar 

  • Ávila M, Garde S, Gaya P, Medina M, Núñez M (2005) Influence of a bacteriocin-producing lactic culture on proteolysis and texture of Hispánico cheese. Int Dairy J 15:145–153

    Article  CAS  Google Scholar 

  • Bierbaum G, Sahl HG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Blackburn P, Goldstein BP, Cook DJ (1997) Patent No WO1997025055 A1. Nisin in combination with glycerol monolaurate active against Helicobacter (Applicant Applied Microbiology Inc)

    Google Scholar 

  • Boakes S, Wadman S (2008) The therapeutic potential of lantibiotics. Innov Pharm Technol 27:22–25

    Google Scholar 

  • Bogovic Matijasic B, Koman Rajsp M, Perko B, Rogelj I (2007) Inhibition of Clostridium tyrobutyricum in cheese by Lactobacillus gasseri. Int Dairy J 17:157–166

    Article  CAS  Google Scholar 

  • Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5(4):321–332

    Article  CAS  PubMed  Google Scholar 

  • Brumfitt W, Salton MRJ, Hamilton-Miller JMT (2002) Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 50:31–734

    Article  CAS  Google Scholar 

  • Brurberg MB, Nes IF, Eijsink VG (1997) Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 26:347–360

    Article  CAS  PubMed  Google Scholar 

  • Calderón-Miranda ML, Barbosa-Cánovas GV, Swanson BG (1999) Transmission of electron microscopy of Listeria innocua treated by electric pulse fields and nisin in skimmed milk. Int J Food Microbiol 51:31–38

    Article  PubMed  Google Scholar 

  • Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B (2014) A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 13:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carroll J, Draper LA, O’Connor PM, Coffey A, Hill C, Ross RP, Cotter PD, O’Mahony J (2010) Comparison of the activities of the lantibioticsnisin and lacticin 3147 against clinically significant mycobacteria. Int J Antimicrob Agents 36:132–136

    Article  CAS  PubMed  Google Scholar 

  • Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coakley M, Fitzgerald G, Ross RP (1997) Application and evaluation of the phage resistance- and bacteriocin-encoding plasmid pMRC01 for the improvement of dairy starter cultures. Appl Environ Microbiol 63:1434–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cobo-Molinos A, Abriouel H, Lucas López R, Ben Omar N, Valdivia E, Gálvez A (2009) Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds, and chemical preservatives against Listeria monocytogenes in ready-to-eat salads. Food Chem Toxicol 47:2216–2223

    Article  CAS  Google Scholar 

  • Coconnier MH, Lievin V, Hemery E, Servin AL (1998) Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol 64:4573–4580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins B, Curtis N, Cotter PD, Hill C, Ross RP (2010) The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother 54(10):4416–4423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Grahan CGM (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivariusUCC118. PNAS 104:7617–7621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Guinane CM, Hill C (2002) The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 46(9):2784–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    Google Scholar 

  • Dawson PL, Carl GD, Acton JC, Han IY (2002) Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poultry Sci 81:721–726

    Article  CAS  Google Scholar 

  • Delves-Broughton J (2007) Nisin as biopreservative. Food Aust 57:525–527

    Google Scholar 

  • Diaz M, Valdivia E, Martínez-Bueno M, Fernández M, Soler-González AS, Ramírez-Rodrigo H, Maqueda M (2003) Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl Environ Microbiol 69:1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104(7):2384–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6

    Google Scholar 

  • Draper LA, Grainger K, Deegan LH, Cotter PD, Hill C, Ross RP (2009) Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Mol Microbiol 71(4):1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70(2):564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driessen AJ, van den Hooven HW, Kuiper W, van de Kamp M, Sahl HG, Konings RN, Konings WN (1995) Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34(5):1606–1614

    Article  CAS  PubMed  Google Scholar 

  • Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106

    Article  CAS  PubMed  Google Scholar 

  • Fenelon MA, Ryan MP, Rea MC, Guinee TP, Ross RP, Hill C, Harrington D (1999) Elevated temperature ripening of reduced fat cheddar made with or without lacticin 3147-producing starter culture. J Dairy Sci 82:10–22

    Article  CAS  Google Scholar 

  • Fernández L, Delgado S, Herrero H, Maldonado A, Rodríguez JM (2008) The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation. J Hum Lact 24:311–316

    Article  PubMed  Google Scholar 

  • Field D, Begley M, O´Connor PM, Hugenholtz F, Cotter PD, Hill C, Ross RP (2012) Bioengineered nisin A derivatives with enhanced activity against Gram positive and Gram negative pathogens. PLoS ONE 7:e46884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K (2007) Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria. Appl Environ Microbiol 73:2871–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielsen C, Brede DA, Hernández PE, Nes IF, Diep DB (2012) The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 56(6):2908–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80:6854–6862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallo LI, Pilosof AMR, Jagus RJ (2007) Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J Food Eng 79:188–193

    Article  CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  PubMed  CAS  Google Scholar 

  • Gotteland M, Cruchet S (2003) Suppressive effect of frequent ingestion of Lactobacillus johnsonii La1 on Helicobacter pylori colonization in asymptomatic volunteers. J Antimicrob Chemother 51:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Gillor O, Nigro LM, Riley MA (2005) Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des 11:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Gut IM, Blanke SR, Van Der Donk WA (2011) Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 6(7):744–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasper HE, de Kruijff B, Breukink E (2004) Assembly and stability of nisin-lipid II pores. Biochemistry 43(36):11567–11575

    Article  CAS  PubMed  Google Scholar 

  • Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313(5793):1636–1637

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113:723–736

    Article  CAS  PubMed  Google Scholar 

  • Issepi R, Pilati F, Marini M, Toselli M, de Niederhäusern S, Guerrieri E, Sabia Messi P, Manacardi G, Anacarso I, Bondi M (2008) Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol 123:281–287

    Article  CAS  Google Scholar 

  • Kalschne DL, Geitenes S, Veit MR, Sarmento CMP, Colla E (2014) Growth inhibition of lactic acid bacteria in ham by nisin: a model approach. Meat Sci 98:744–752

    Article  CAS  PubMed  Google Scholar 

  • Kang BS, Seo JG, Lee GS, Kim JH, Kim SY, Han YW, Kang H, Kim HO, Rhee JH, Chung MJ, Park YM (2009) Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J. Microbiol 47:101–109

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Malik RK, Mishra SK, Singh TP, Bhardwaj A, Singroha G, Vij S, Kumar N (2011) Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria. Microb Drug Resist 17(2):197–205

    Article  PubMed  Google Scholar 

  • Khusainov R, Heils R, Lubelski J, Moll GN, Kuipers OP (2011) Determining sites of interaction between prenisin and its modification enzymes NisB and NisC. Mol Microbiol 82:706–718

    Article  CAS  PubMed  Google Scholar 

  • Kim TS, Hur JW, Yu MA, Cheigh C, Kim KN, Hwang JK, Pyun YR (2003) Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J Food Prot 66:3–12

    CAS  PubMed  Google Scholar 

  • Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB (2011) Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 157(Pt 12):3256–3267

    Article  CAS  PubMed  Google Scholar 

  • Kjos M, Oppegård C, Diep DB, Nes IF, Veening JW, Nissen-Meyer J, Kristensen T (2014) Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol 92(6):1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Kluskens LD, Kuipers A, Rink R, de Boef E, Fekken S, Driessen AJ, Kuipers OP, Moll GN (2005) Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. Biochemistry 44(38):12827–12834

    Article  CAS  PubMed  Google Scholar 

  • Li M, Yoneyama F, Toshimitsu N, Zendo T, Nakayama J, Sonomoto K (2013) Lethal hydroxyl radical accumulation by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 57(8):3897–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476

    Article  CAS  PubMed  Google Scholar 

  • Maisnier-Patin S, Deschamps N, Tatini SR, Richard J (1992) Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72:249–263

    Article  CAS  Google Scholar 

  • Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ (2010) Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother 54(1):440–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado-Barragán A, Cárdenas N, Martínez B, Ruiz-Barba JL, Fernández-Garayzabal JF, Rodríguez JM, Gibello A (2013) Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 79(14):4336–4346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalbán-López M, Valdivia E, Martínez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32:2–22

    Article  CAS  PubMed  Google Scholar 

  • Martínez B, Fernández M, Suárez JE, Rodríguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145:3155–3161

    Article  PubMed  Google Scholar 

  • Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the lactococcal two-component system CesSR. Mol Microbiol 64(2):473–486

    Article  PubMed  CAS  Google Scholar 

  • Martínez B, Böttiger T, Schneider T, Rodríguez A, Sahl HG, Wiedemann I (2008a) Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol 74(15):4666–4670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez B, Obeso JM, Rodríguez A, García P (2008b) Nisin-bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 122(3):253–258

    Article  PubMed  CAS  Google Scholar 

  • Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Let Appl Microbiol 41:464–469

    Article  CAS  Google Scholar 

  • McAuliffe O, Hill C, Ross RP (1999) Inhibition of Listeria monocytogenes in cottage cheese manufactured with lacticin 3147producing starter culture. J Appl Microbiol 86:251–256

    Article  CAS  PubMed  Google Scholar 

  • Meira SMM, Zehetmeyer G, Jardim AI, Scheibel JM, Bof de Oliveira RV, Brandelli A (2014) Polypropylene/montmorillonitenanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Techn 7:3349–3357

    Article  CAS  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

    Article  CAS  PubMed  Google Scholar 

  • Miller KW, Ray P, Steinmetz T, Hanekamp T, Ray B (2005) Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett Appl Microbiol 40:56–62

    Article  CAS  PubMed  Google Scholar 

  • Moll GN, Konings WN, Driessen AJ (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76(1–4):185–198

    Article  CAS  PubMed  Google Scholar 

  • Morgan SM, O’Sullivan L, Ross RP, Hill C (2002) The design of three strain starter system for Cheddar cheese manufacture exploiting bacteriocin-induced starter lysis. Int Dairy J 17:760–769

    Google Scholar 

  • Müller A, Ulm H, Reder-Christ K, Sahl HG, Schneider T (2012) Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors. Microb Drug Resist 18(3):261–270

    Article  PubMed  CAS  Google Scholar 

  • Muñoz A, Maqueda M, Rodríguez A, Valdivia E (2004) Control of psychrotrophic Bacillus cereus in a non-fat hard type cheese by an enterococcal strain producing enterococin AS-48. J Food Prot 67:1517–1521

    PubMed  Google Scholar 

  • Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Chen Y, Chikindas ML, Huss HH, Gram L, Montville TJ (2000) Carbon dioxide and nisin act synergistically on Listeria monocytogenes. Appl Environ Microbiol 66:769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen-Meyer J, Rogne P, Öppegard C, Haugen HS, Kristiansen PE (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10(1):19–37

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan L, O’Connor EB, Ross RP, Hill C (2006) Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J Appl Microbiol 100:135–143

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov KV, Kristiansen PE, Uzelac G, Topisirovic L, Kojic M, Nissen-Meyer J, Nes IF, Diep DB (2014) Defining the structure and receptor binding domain of the leaderless bacteriocin LsbB. J Biol Chem 289(34):23838–23845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13 (Supl 1):S2

    Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    Article  CAS  PubMed  Google Scholar 

  • Piper C, Cotter PD, Paul Ross RP, Hill C (2009) Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6:1–18

    Article  CAS  PubMed  Google Scholar 

  • Piper C, Cassey PG, Hill C, Cotter PD, Ross RP (2012) The lantibiotic Lacticin 3147 prevents systemic spread of Staphylococcus aureus in a murine infection model. Int J Microbiol 2012:e806230

    Article  CAS  Google Scholar 

  • Ra R, Beerthuyzen MM, de Vos WM, Saris PE, Kuipers OP (1999) Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiology 145:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Rayman MK, Aris B, Hurst A (1981) Nisin: a possible alternative or adjunct to nitrite in the preservation of meats. Appl Environ Microbiol 41:375–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehaiem A, Martínez B, Manai M, Rodríguez A (2012) Technological performance of the enterocin A producer Enterococcus faecium MMRA as a protective adjunct culture to enhance hygienic and sensory attributes of traditional fermented milk ‘Rayeb’. Food Bioprocess Technol 5:2140–2150

    Article  CAS  Google Scholar 

  • Rilla N, Martínez B, Delgado T, Rodríguez A (2003) Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer. Int J Food Microbiol 85:22–33

    Google Scholar 

  • Rilla N, Martínez B, Rodríguez A (2004) Inhibition of a methicillin-resistant Staphylococcus aureus strain in Afuega’l Pitu cheese by the nisin Z producing strain Lactococcus lactis subsp. lactis IPLA 729. J Food Prot 67:928–933

    PubMed  Google Scholar 

  • Roces C, Pérez V, Campelo AB, Blanco D, Kok J, Kuipers OP, Rodríguez A, Martínez B (2012a) The putative lactococcal extracytoplasmic function anti-sigma factor llmg2447 determines resistance to the cell wall-active bacteriocin lcn972. Antimicrob Agents Chemother 56(11):5520–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roces C, Rodríguez A, Martínez B (2012b) Cell wall-active bacteriocins and their applications beyond antibiotic activity. Probiotics Antimicrob Proteins 4:259–272

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez E, Arqués JL, Gaya P, Tomillo J, Núñez M, Medina M (2000) Behaviour of Staphylococcus aureus in semihard cheese made from raw milk with nisin-producing starter cultures. Milchwissenschaft 55:633–635

    Google Scholar 

  • Rose NL, Palcic MM, Sporns P, McMullen LM (2002) Nisin: a novel substrate for glutathione S-transferase isolated from fresh beef. J Food Sci 67:2288–2293

    Article  CAS  Google Scholar 

  • Ryan MP, Meaney WJ, Ross RP, Hill C (1998) Evaluation of Lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64:2287–2290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Barrena MJ, Martínez-Ripoll M, Gálvez A, Valdivia E, Maqueda M, Cruz V, Albert A (2003) Structure of bacteriocin AS-48: from soluble state to membrane bound state. J Mol Biol 334(3):541–549

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M (2011) AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 68:2845–2857

    Article  PubMed  CAS  Google Scholar 

  • Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000a) Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate. J Appl Microbiol 89:573–579

    Article  CAS  PubMed  Google Scholar 

  • Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000b) Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol 60:241–249

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Hillman J (2008) Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr Opin Microbiol 11:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrino-Lopez A, Martin-Belloso O (2006) Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. J Food Prot 69:345–353

    CAS  PubMed  Google Scholar 

  • Su P, Henriksson A, Mitchell H (2007) Survival and retention of the probiotic Lactobacillus casei LAFTI®L26 in the gastrointestinal tract of the mouse. Let Appl Microbiol 44:120–125

    Google Scholar 

  • Sun Z, Zhong J, Liang X, Liu J, Chen X, Huan L (2009) Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother 53(5):1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takala TM, Saris PE (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59(4–5):467–471

    CAS  PubMed  Google Scholar 

  • Tessema GT, Moretro T, Snipen L, Axelsson L, Naterstad K (2011) Global transcriptional analysis of spontaneous sakacin P-resistant mutant strains of Listeria monocytogenes during growth on different sugars. PLoS ONE 6(1):e16192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzelac G, Kojic M, Lozo J, Aleksandrzak-Piekarczyk T, Gabrielsen C, Kristensen T, Nes IF, Diep DB, Topisirovic L (2013) A Zn-dependent metallopeptidase is responsible for sensitivity to LsbB, a class II leaderless bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5. J Bacteriol 195(24):5614–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol R 64:655–671

    Article  CAS  Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276(3):1772–1779

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann I, Böttiger T, Bonelli RR, Schneider T, Sahl HG, Martínez B (2006a) Lipid II-based antimicrobial activity of the lantibiotic plantaricin C. Appl Environ Microbiol 72(4):2809–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann I, Böttiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006b) The mode of action of the lantibiotic lacticin 3147–a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61(2):285–296

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Zhang ZZ, Chen XZ, Yang W, Huan LD (2004) Site-directed mutagenesis of the hinge region of nisin Z and properties of nisin Z mutants. Appl Microbiol Biotechnol 64:806–815

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evaristo Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martínez, B., Rodríguez, A., Suárez, E. (2016). Antimicrobial Peptides Produced by Bacteria: The Bacteriocins. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_2

Download citation

Publish with us

Policies and ethics