Skip to main content
Log in

Technological Performance of the Enterocin A Producer Enterococcus faecium MMRA as a Protective Adjunct Culture to Enhance Hygienic and Sensory Attributes of Traditional Fermented Milk ‘Rayeb’

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Enterococcus faecium MMRA is an enterocin A producer isolated from ‘Rayeb’, a Tunisian fermented milk drink. In this work, safety aspects and its behaviour in raw milk were investigated to assess its suitability as a protective adjunct culture. E. faecium MMRA showed interesting features such as the absence of several virulence traits, susceptibility to vancomycin and other clinically relevant antibiotics, and lack of haemolytic activity. To evaluate its performance as an adjunct culture for Rayeb, changes in the overall composition of control (non-inoculated) and experimental Rayeb (inoculated with 1%, v/v, E. faecium MMRA) were determined throughout duplicate fermentations of raw milk using microbiological, chemical, HPLC and headspace GC-MS analyses. E. faecium MMRA could multiply in raw milk and produced enterocin A. Interestingly, a higher content of volatile compounds including ethanol, diacetyl and 2-propanol was observed in the presence of this bacteriocin producer. Furthermore, this strain was capable of inhibiting the growth of Listeria monocytogenes CECT 4032 in pasteurised milk, although total killing was not achieved. Further experiments confirmed the development of resistant variants to enterocin A. On similar challenge assays, L. monocytogenes CECT 5672 growth was halted by the presence of the enterocin producer, but viability was only slightly reduced during cold storage. According to our results, E. faecium MMRA meets the criteria for an autochthonous protective adjunct culture to enhance both the hygienic and the sensory attributes of Rayeb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abriouel, H., Ben Omar, N., Cobo Molinos, A., Lucas López, R., Grande, M. J., Martínez-Viedma, P., et al. (2008). Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. International Journal of Food Microbiology, 123, 38–49.

    Article  CAS  Google Scholar 

  • Andrighetto, C., Knijff, E., Lombardi, A., Torriani, S., Vancanneyt, M., Kersters, K., et al. (2001). Phenotypic and genetic diversity of enterococci isolated from Italian cheeses. The Journal of Dairy Research, 68, 303–316.

    Article  CAS  Google Scholar 

  • Arora, G., Lee, B. H., & Lamoureux, M. (1990). Characterisation of enzyme profiles of Lactobacillus casei species by rapid API ZYM system. Journal of Dairy Science, 73, 264–273.

    Article  CAS  Google Scholar 

  • Aureli, P., Fiorucci, G. C., Caroli, D., Marchiaro, G., Novara, O., Leone, L., et al. (2000). An outbreak of febrile gastroenteritis associated with corn contaminated with Listeria monocytogenes. The New England Journal of Medicine, 342, 1236–1241.

    Article  CAS  Google Scholar 

  • Aymerich, T., Holo, H., Havarstein, L. S., Hugas, M., Garriga, M., & Nes, I. F. (1996). Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology, 62, 1676–1682.

    CAS  Google Scholar 

  • Barbosa, J., Ferreira, V., & Teixeira, P. (2009). Antibiotic susceptibility of enterococci isolated from traditional fermented meat products. Food Microbiology, 26, 527–532.

    Article  CAS  Google Scholar 

  • Ben Belgacem, Z., Abriouel, H., Ben Omar, N., Lucas, R., Martinez-Cañamero, M., Gálvez, A., et al. (2010). Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control, 21, 462–470.

    Article  CAS  Google Scholar 

  • Benkerroum, N., & Tamime, A. Y. (2004). Technology transfer of some Moroccan traditional dairy products (lben, jben and smen) to small industrial scale. Food Microbiology, 21, 399–413.

    Article  Google Scholar 

  • Bover-Cid, S., & Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53, 33–41.

    Article  CAS  Google Scholar 

  • Callewaert, R., Hugas, M., & de Vuyst, L. (2000). Competitiveness and bacteriocin production of Enterococci in the production of Spanish-style dry fermented sausages. International Journal of Food Microbiology, 57, 33–42.

    Article  CAS  Google Scholar 

  • Comité de l’Antibiogramme de la Société Française de Microbiologie. (2008). Recommendations 2008 (pp. 1–50). Coordonnateur: C.J. Soussy. Société Française de Microbiologie, Paris, France.

  • Cossart, P., & Toledo-Arana, A. (2008). Listeria monocytogenes, a unique model in infection biology: An overview. Microbes and Infection, 10, 1041–1050.

    Article  CAS  Google Scholar 

  • Deegan, L. H., Cotter, P. D., Hill, C., & Ross, R. P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.

    Article  CAS  Google Scholar 

  • El Marrakchi, A., Hamama, A., & Elotmani, F. (1993). Occurrence of Listeria monocytogenes in milk and dairy products produced or imported into Morocco. Journal of Food Protection, 56, 256–259.

    Google Scholar 

  • Ennahar, S., Deschamps, N., & Richard, J. (2000). Natural variation in susceptible Listeria strains to class IIa bacteriocins. Current Microbiology, 41, 1–4.

    Article  CAS  Google Scholar 

  • Fernández, M., Linares, D. M., & Alvarez, M. A. (2004). Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. Journal of Food Protection, 67, 2521–2529.

    Google Scholar 

  • Fernández, M., Flórez, A. B., Linares, D. M., Mayo, B., & Alvarez, M. A. (2006). Early PCR detection of tyramine-producing bacteria during cheese production. The Journal of Dairy Research, 73, 318–321.

    Article  Google Scholar 

  • Fernández, M., Linares, D. M., Rodríguez, A., & Alvarez, M. A. (2007). Factors affecting tyramine production in Enterococcus durans IPLA 655. Applied of Microbiology and Biotechnology, 73, 1400–1406.

    Google Scholar 

  • Foulquié Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & de Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106, 1–24.

    Article  Google Scholar 

  • Franz, C., Muscholl-Silberhorn, A., Nuha, M. K. Y., Vancanneyt, M., Swings, J., & Holzapfel, W. H. (2001). Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Applied and Environmental Microbiology, 67, 4385–4389.

    Article  CAS  Google Scholar 

  • Franz, C., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—A conundrum for food safety. International Journal of Food Microbiology, 88, 105–122.

    Article  CAS  Google Scholar 

  • Gálvez, A., Abriouel, H., Lopez, R. L., & Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120, 51–70.

    Article  Google Scholar 

  • García, M. T., Martínez Cañamero, M., Lucas, R., Ben Omar, N., Pulido, R. P., & Galvez, A. (2004). Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. International Journal of Food Microbiology, 90, 161–170.

    Article  Google Scholar 

  • García-Moruno, E., Carrascosa, A. V., & Muñoz, R. (2005). A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. Journal of Food Protection, 68, 625–629.

    Google Scholar 

  • Gasson, M. J., & Eaton, T. J. (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiology, 67, 1628–1635.

    Article  Google Scholar 

  • Giraffa, G. (1995). Enterococcal bacteriocins: Their potential as anti-Listeria factors in dairy technology. Food Microbiology, 12, 291–299.

    Article  CAS  Google Scholar 

  • Giraffa, G. (2002). Enterococci from foods. FEMS Microbiology Reviews, 26, 163–171.

    Article  CAS  Google Scholar 

  • Gravesen, A., Jydegaard Axelsen, A. M., Mendes da Silva, J., Hansen, T. B., & Knochel, S. (2002). Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Applied and Environmental Microbiology, 68, 756–764.

    Article  CAS  Google Scholar 

  • Hamdi, T. M., Naïm, M., Martin, P., & Jacquet, C. (2007). Identification and molecular characterization of Listeria monocytogenes isolated in raw milk in the region of Algers (Algeria). International Journal of Food Microbiology, 116, 190–193.

    Article  CAS  Google Scholar 

  • IDF Standard 149. (1991). Lactic acid starters—Standard of identity.

  • IDF Standard 152. (1991). Milk and milk products. Determination of fat content. General guidance on the use of butyrometric methods.

  • IDF Standard 20B. (1993). Milk. Determination of nitrogen content: Part 1. Kjeldahl method.

  • IDF Standard 4A. (1982). Cheese and processed cheese. Determination of the total solids content (reference method).

  • Jay, J. M. (1982). Antimicrobial properties of diacetyl. Applied and Environmental Microbiology, 44, 525–532.

    CAS  Google Scholar 

  • Katla, T., Naterstad, K., Vancanneyt, M., Swings, J., & Axelsson, L. (2003). Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Applied and Environmental Microbiology, 69, 4431–4437.

    Article  CAS  Google Scholar 

  • Khan, H., Flint, S., & Yu, P. L. (2010). Enterocins in food preservation. International Journal of Food Microbiology, 141, 1–10.

    Article  CAS  Google Scholar 

  • Klein, G. (2003). Ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. International Journal of Food Microbiology, 88, 123–131.

    Article  Google Scholar 

  • Le Jeune, C., Lonvaud-Funel, A., ten Brink, B., Hofstra, H., & Van der Vossen, J. M. (1995). Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. The Journal of Applied Bacteriology, 78, 316–332.

    Article  Google Scholar 

  • Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55, 181–188.

    Article  CAS  Google Scholar 

  • Linares, D., Fernández, M., Martín, M. C., & Alvarez, A. (2009). Tyramine biosynthesis in Enterococcus durans is transcriptionally regulated by the extracellular pH and tyrosine concentration. Microbial Biotechnology, 6, 625–633.

    Article  Google Scholar 

  • Lou, Y., & Yousef, A. E. (1999). Characteristics of Listeria monocytogenes important to food processors. In Ryser & Marth (Eds.), Listeria, listeriosis and food safety (pp. 131–224). New York: Marcel Dekker.

    Google Scholar 

  • Lucas, P., & Lonvaud-Funel, A. (2002). Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211, 85–89.

    Article  CAS  Google Scholar 

  • Lundén, J., Tolvanen, R., & Korkeala, H. (2004). Human listeriosis outbreaks linked to dairy products in Europe. Journal of Dairy Science, 87, 6–11.

    Article  Google Scholar 

  • Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Duprè, I., et al. (2003). Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International Journal of Food Microbiology, 88, 291–304.

    Article  CAS  Google Scholar 

  • Martínez, B., Bravo, D., & Rodríguez, A. (2005). Consequences of the development of nisin-resistant Listeria monocytogenes in fermented dairy products. Journal of Food Protection, 68, 2383–2388.

    Google Scholar 

  • Ogier, J. C., & Serror, P. (2008). Safety assessment of dairy microorganisms: The Enterococcus genus. International Journal of Food Microbiology, 126, 291–301.

    Article  CAS  Google Scholar 

  • Paulsen, I. T., Banerjei, L., Myers, G. S., Nelson, K. E., Seshadri, R., Read, T. D., et al. (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science, 299, 2071–2074.

    Article  CAS  Google Scholar 

  • Pérez-Pulido, R., Abriouel, H., Ben Omar, N., Lucas, R., Martínez-Cañamero, M., & Gálvez, A. (2006). Safety and potential risks of enterococci isolated from traditional fermented capers. Food and Chemical Toxicology, 44, 2070–2077.

    Article  Google Scholar 

  • Rehaiem, A., Martίnez, B., Manai, M., & Rodrίguez, A. (2010). Production of enterocin A by Enterococcus faecium MMRA isolated from ‘Rayeb’, a traditional Tunisian dairy beverage. Journal of Applied Microbiology, 108, 1685–1693.

    Article  CAS  Google Scholar 

  • Rilla, N., Martínez, B., Delgado, T., & Rodríguez, A. (2003). Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer. International Journal of Food Microbiology, 85, 23–33.

    Article  CAS  Google Scholar 

  • Rodriguez, J. L., Gaya, P., Medina, M., & Nuñez, M. (1997). Bactericidal effect of enterocin 4 on Listeria monocytogenes in a model dairy system. Journal of Food Protection, 60, 28–32.

    CAS  Google Scholar 

  • Ryser, E. (1999). Foodborne listeriosis. In Ryser & Marth (Eds.), Listeria, listeriosis and food safety (pp. 299–358). New York: Marcel Dekker.

    Google Scholar 

  • Salazar, N., Prieto, A., Leal, J. A., Mayo, B., Bada-Gancedo, J. C., de los Reyes-Gavilán, C. G., et al. (2009). Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. Journal of Dairy Science, 92, 4158–4168.

    Article  CAS  Google Scholar 

  • Sarantinopoulos, P., Andrighetto, C., Georgalaki, M. D., Rea, M. C., Lombardi, A., Cogan, T. M., et al. (2001). Biochemical properties of enterococci relevant to their technological performance. International Dairy Journal, 11, 621–647.

    Article  CAS  Google Scholar 

  • Sarantinopoulous, P., Leroy, F., Leontopoulou, E., Georgalaki, M. D., Kalantzopoulous, G., Tsakalidou, E., et al. (2002). Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. International Journal of Food Microbiology, 72, 125–136.

    Article  Google Scholar 

  • Sulzer, G., & Busse, M. (1991). Growth inhibition of Listeria spp. on Camembert cheese by bacteria producing inhibitory substances. International Journal of Food Microbiology, 14, 287–296.

    Article  CAS  Google Scholar 

  • Tessema, G. T., Møretrø, T., Kohler, A., Axelsson, L., & Naterstad, K. (2009). Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Applied and Environmental Microbiology, 75, 6973–6980.

    Article  CAS  Google Scholar 

  • Vadyvaloo, V., Hastings, J. W., van der Merwe, M. J., & Rautenbach, M. (2002). Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Applied and Environmental Microbiology, 68, 5223–5230.

    Article  CAS  Google Scholar 

  • Valenzuela, A. S., Ben Omar, N., Abriouel, H., Lucas López, R., Ortega, E., Martínez Cañamero, M., et al. (2008). Risk factors in enterococci isolated from foods in Morocco: Determination of antimicrobial resistance and incidence of virulence traits. Food Chemistry and Toxicology, 46, 2648–2652.

    Article  Google Scholar 

  • WHO (World Health Organization). (2007). Food safety and foodborne illness. Fact sheet no. 237. WHO Media Centre. http://www.who.int/mediacentre/factsheets/fs237/en/.

Download references

Acknowledgements

This work has been partially funded by grant BIO2007-65061 from Ministerio de Ciencia e Innovación (Spain). Amel Rehaiem is the recipient of a MAEC-AECID fellowship (Spain). We thank Ana Herrero and María Fernández (IPLA-CSIC, Spain) for their technical assistance on biogenic amine determination and for supplying the specific primers. Luis Cintas (Universidad Complutense de Madrid, Spain) and Manuel Martínez-Bueno (Universidad de Granada, Spain) are also thanked for sharing primers, strains and DNA used as positive controls, respectively. The English usage in the manuscript has been revised by Emma Meader (Institute of Food Research, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehaiem, A., Martínez, B., Manai, M. et al. Technological Performance of the Enterocin A Producer Enterococcus faecium MMRA as a Protective Adjunct Culture to Enhance Hygienic and Sensory Attributes of Traditional Fermented Milk ‘Rayeb’. Food Bioprocess Technol 5, 2140–2150 (2012). https://doi.org/10.1007/s11947-010-0501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0501-7

Keywords

Navigation