Skip to main content

Microbiology of the Deep Subsurface Geosphere and Its Implications for Used Nuclear Fuel Repositories

  • Chapter
  • First Online:
Their World: A Diversity of Microbial Environments

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 1))

Abstract

A number of countries are actively working toward the siting and development of deep geological repositories (DGR) for used nuclear fuel. Given their ubiquity and metabolic capabilities, it is assumed that with sufficient time and appropriate conditions, microorganisms could alter the geochemistry of the repository. As such, the DGR concept provides an invaluable opportunity to evaluate the evolution of subsurface conditions from “disturbance” back to original state. The design concept involves the use of steel or copper/steel used fuel containers, surrounded by a low-permeability, swelling clay buffer material within a low-permeability, stable host rock environment. Within a newly constructed DGR, conditions would be warm, oxidizing, and dry. With sufficient time, these conditions would gradually revert to the original state of the surrounding geology. This chapter discusses how microbes and their metabolic activity may change over time and discusses the potential effects they may have on the engineered barrier system (EBS) that serves to isolate the used fuel containers and on the used fuel itself. The widespread support for the development of underground facilities as a means to ensure safe, long-term storage of increasing inventory of nuclear waste underscores the pressing need to learn more about the impacts of microbial activity on the performance of such facilities over the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akid R, Wang H, Smith TJ, Greenfield D, Earthman JC (2008) Biological functionalisation of a sol–gel coating for the mitigation of microbial-induced corrosion. Adv Funct Mater 18:203–211

    Article  CAS  Google Scholar 

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219:131–155

    Article  Google Scholar 

  • Anderson RT, Lovley DR (2002) Microbial redox interactions with uranium: an environmental perspective. In: Keith-Roach MJ, Livens FR (eds) Interactions of microorganisms with radionuclides. Elsevier, Oxford, pp 205–223

    Google Scholar 

  • Anderson CR, Jakobsson A-M, Pedersen K (2006) Autoradiographic comparisons of radionuclide adsorption between subsurface anaerobic biofilms and granitic host rocks. Geomicrobiol J 23:15–29

    Article  CAS  Google Scholar 

  • Anderson CR, Jakobsson A-M, Pedersen K (2007) Influence of in situ biofilm coverage on the radionuclide adsorption capacity of subsurface granite. Environ Sci Technol 41:830–836

    Article  CAS  PubMed  Google Scholar 

  • Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum and Zoon, The Hague, The Netherlands

    Google Scholar 

  • Bass CJ, Holtom GJ, Jackson CP, Lappin-Scott H (2002) The potential impact of micro-organisms in the geosphere on radionuclide migration. In: Report # AEAT/ERRA-0239. Nirex Limited, UK

    Google Scholar 

  • Baker BJ, Moser DB, MacGregor BJ, Fishbain S, Wagner M, Fry NK, Jackson B, Speolstra N, Loos S, Takai K, Sherwood Lollar B, Fredrickson J, Balkwill D, Onstott TC, Wimpee CF, Stahl DA (2003) Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol 5:267–277

    Article  PubMed  Google Scholar 

  • Balkwill DL (1989) Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J 7:33–52

    Article  Google Scholar 

  • Bennett DG, Gens R (2008) Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion. J Nucl Mater 379:1–8

    Article  CAS  Google Scholar 

  • Biddle JF, Fitz-Bibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci U S A 105:10583–10588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth W (1987) Post-mortem on Three Mile Island. Science 238:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott TC (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82

    Article  CAS  PubMed  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  • Brierley CL (1978) Bacterial leaching. Crit Rev Microbiol 6:207–262

    Article  CAS  Google Scholar 

  • Brown DA, Sherriff BL (1999) Evaluation of the effect of microbial subsurface ecosystems on spent nuclear fuel repositories. Environ Technol 20:469–477

    Article  CAS  Google Scholar 

  • Brydie JR, Wogelius RA, Merrifield CM, Boult S, Gilbert P, Allison D, Vaughan DJ (2005) The μ2M project on quantifying the effects of biofilm growth on hydraulic properties of natural porous media and on sorption equilibria: an overview. In: Shaw RA (ed) Understanding the micro to macro behaviour of rock-fluid systems, Special Publication 249. Geological Society, London, pp 131–144

    Google Scholar 

  • Busscher HJ, van der Mei HC (2006) Microbial adhesion in flow displacement systems. Clin Microbiol Rev 19:127–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Chapelle FH (1993) Ground-water microbiology and geochemistry. Wiley, New York

    Google Scholar 

  • Chapelle FH, Lovley DR (1990) Rates of microbial metabolism in deep coastal plain aquifers. Appl Environ Microbiol 156:1865–1874

    Google Scholar 

  • Characklis WG (1990) Microbial fouling. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 523–584

    Google Scholar 

  • Chen J, Qin Z, Shoesmith DW (2011) Long-term corrosion of copper in a dilute anaerobic sulphide solution. Electrochim Acta 56:7854–7861

    Article  CAS  Google Scholar 

  • Coombs P, Wagner D, Bateman K, Harrison H, Milodowski AE, Noy D, West JM (2010) The role of biofilms in subsurface transport processes. Q J Eng Geol 43:131–139

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Craig RF (1987) Soil mechanics, 4th edn. Chapman and Hall, London, UK

    Google Scholar 

  • Daly MJ (2000) Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol 11:280–285

    Article  CAS  PubMed  Google Scholar 

  • Davey HH (2011) Life, death and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFlaun MF, Fredrickson JK, Dong H, Pfiffner SM, Onstott TC, Balkwill DL, Streger SH, Stackenbrandt E, Knoessen S, van Heerden F (2007) Isolation and characterization of a Geobacillus thermoleovorans strain from an ultra-deep South African gold mine. Syst Appl Microbiol 30:152–164

    Article  CAS  PubMed  Google Scholar 

  • Dixon DA (2000) Porewater salinity and the development of swelling pressure in bentonite based buffer and backfill materials. Posiva, Report 2000–04. Helsinki, Finland

    Google Scholar 

  • Dixon DA, Chandler NA, Baumgartner P (2002) The influence of groundwater salinity and interfaces on the performance of potential backfilling materials. Proc. 6th International Workshop on Design and Construction of Final Repositories, Brussels, Belgium

    Google Scholar 

  • Fine F, Gervais P (2005) Thermal destruction of dried vegetative yeast cells and dried bacterial spores in a convective hot air flow: strong influence of initial water activity. Environ Microbiol 7:40–46

    Article  PubMed  Google Scholar 

  • Forsyth B, Cameron A, Miller A (1995) Explosives and water quality. In: Hynes TP, Blanchette MC (eds) Proceedings of Sudbury ‘95 mining and the environment, vol II, Ground and surface water. Canmet, Ottawa, pp 795–803

    Google Scholar 

  • Frazier W, Kretzschmar R, Kraemer SM (2005) Bacterial siderophores promote dissolution of UO2 under reducing conditions. Environ Sci Technol 39:5709–5715

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Balkwill DL (2006) Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J 23:345–356

    Article  CAS  Google Scholar 

  • Fredrickson JK, Onstott TC (1996) Microbes deep inside the Earth. Sci Am 275:68–73

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobial J 14:183–202

    Article  Google Scholar 

  • Fredrickson JK, Li S-MW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga S, Honya M, Yokoyama E, Arai K, Mine T, Mihara M, Senju T (2001) A study on conditions for microbial transport through compacted buffer material. Mater Res Soc Symp Proc 663:675–682

    Article  Google Scholar 

  • Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol 33:107–172

    Article  CAS  PubMed  Google Scholar 

  • Goldschneider AA, Haralampides KA, MacQuarrie KTB (2007) River sediment and flow characteristics near a bank filtration water supply: implications for riverbed clogging. J Hydrol 344:55–69

    Article  Google Scholar 

  • Grant WD, Holtom GJ, Rosevear A, Widdowson D (2000) A review of environmental microbiology relevant to the disposal of radioactive waste in a deep geological repository. Nirex Report NSS/R329

    Google Scholar 

  • Greenblatt CL, Davis A, Clement BG, Kitts CL, Cox T, Cano RJ (1999) Diversity of microorganisms isolated from amber. Microb Ecol 38:58–68

    Article  PubMed  Google Scholar 

  • Hallbeck L (2010) Principal organic materials in a repository for spent nuclear fuel. SKB Technical Report, TR-2010-19

    Google Scholar 

  • Hama K, Bateman K, Coombs P, Hards VL, Milodowski AE, West JM, Wetton PD, Yoshida H, Aoki K (2001) Influence of bacteria on rock-water interaction and clay mineral formation in subsurface granitic environments. Clay Miner 36:599–613

    Article  CAS  Google Scholar 

  • Harder W, Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu Rev Microbiol 37:1–23

    Article  CAS  PubMed  Google Scholar 

  • Harvey RW, Sulflita JM, McInerney MJ, Mills AL (2007) Overview of issues in subsurface and landfill microbiology. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenback LD (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 795–798

    Google Scholar 

  • Haveman SA, Stroes-Gascoyne S, Hamon CJ (1995) The microbial population of buffer materials. Atomic Energy of Canada Limited Technical Record, TR-654, COG-94–488

    Google Scholar 

  • Haveman SA, Stroes-Gascoyne S, Hamon CJ (1996) Biodegradation of a sodium sulphonated naphthalene formaldehyde condensate by bacteria naturally present in granitic groundwater. Atomic Energy of Canada Limited Technical Record, TR-72 1, COG-95-547

    Google Scholar 

  • Haveman SA, Swanson EWA, Voordouw G, Al TA (2005) Microbial populations of the river-recharged Fredericton aquifer. Geomicrobiol J 22:311–324

    Article  Google Scholar 

  • Hedin A (2006) Safety function indicators in SKB’s safety assessments of a KBS-3 repository. In: Proceeding International High-Level Radioactive Waste Management Conference, Las Vegas, NV, April 30–May 04, 2006

    Google Scholar 

  • Hoehler TM (2004) Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology 2:205–215

    Article  Google Scholar 

  • Horn JM, Davies M, Martin S, Lian T, Jones D (1998) Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository. Presented at ICONE-6, May 10–15. Available at: www.osti.gov/bridge/servlets/purl/289885-UhgQya/webviewable/289885.pdf

  • Howsam P (1987) Biofouling in wells and aquifers. Water Environ J 2:209–215

    Article  Google Scholar 

  • Huang W-L, Longo JM, Pevear DR (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays Clay Miner 41:162–177

    Article  CAS  Google Scholar 

  • Humphreys PN, West JN, Metcalfe R (2010) Microbial effects on repository performance. NDA report QRS-1378Q-1. February 2010

    Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  CAS  PubMed  Google Scholar 

  • Jägevall S, Rabe L, Pedersen K (2011) Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory. Sweden Microb Ecol 61:410–422

    Article  PubMed  Google Scholar 

  • Jaisi DP, Eberl DD, Dong H, Kim J (2011) The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction. Clays Clay Miner 59:21–33

    Article  CAS  Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology (7th Edn). Springer, New York, 810

    Google Scholar 

  • John SG, Ruggiero CE, Hersman LE, Tung CS, Neu MP (2001) Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol 35:2942–2948

    Article  CAS  PubMed  Google Scholar 

  • Jolley DM, Ehrhorn TF, Horn J (2003) Microbial impacts to the near-field environment geochemistry: a model for estimating microbial communities in repository drifts at Yucca Mountain. J Contam Hydrol 62–63:553–575

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Lineweaver CH (2010) To what extent does terrestrial life “Follow the water”? Astrobiology 10:349–361

    Article  PubMed  Google Scholar 

  • Kieft TL, Phelps TJ (1997) Life in the slow lane: activities of microorganisms in the subsurface. In: Amy P, Haldeman D (eds) The microbiology of the terrestrial subsurface. CRC, Boca Raton, FL, pp 135–161

    Google Scholar 

  • Kim J, Dong H, Seabaugh J, Newell SW, Ebert DD (2004) Role of microbes in the smectite-to-illite reaction. Science 303:830–832

    Article  CAS  PubMed  Google Scholar 

  • King F (1996) A copper container corrosion model for the in-room emplacement of used CANDU fuel. AECL-11552, COG-96-105. Atomic Energy of Canada Limited Report

    Google Scholar 

  • King F (2007) Status of the understanding of used fuel container corrosion processes—summary of current knowledge and gap analysis. Nuclear Waste Management Organization Report. NWMO-TR-2007-09. Toronto, ON

    Google Scholar 

  • King F, Kolář M (2006) Consequences of microbial activity for corrosion of copper used fuel containers—Analyses using the CCM – MIC.0.1 Code. Ontario Power Generation Report 06819-REP-01300-10120-R00. Toronto, Canada

    Google Scholar 

  • King F, Stroes-Gascoyne S (1995) Microbiologically influenced corrosion of nuclear fuel waste disposal containers. In: Angel P et al. (Eds) Proceedings of the 1995 International Conference of Microbial Influenced Corrosion. 35/1-35/14. Nace International

    Google Scholar 

  • King F, Ahonen L, Taxen C, Vuorinen U, Weme L (2001) Copper corrosion under expected conditions in a deep geologic repository. Swedish Nuclear Fuel and Waste Management Company Report, SKB TR 01–23

    Google Scholar 

  • King F, Lilja C, Pedersen K, Pitkänen P, Vähänen M (2010) An update of the state-of the- art report on the corrosion of copper under expected conditions in a deep geologic repository. Swedish Nuclear Fuel and Waste Management Company Report, SKB TR-10-67

    Google Scholar 

  • Kotelnikova S, Pedersen K (1997) Evidence for methanogenic archaea and homoacetogenic bacteria in deep granitic rock aquifers. FEMS Microbiol Rev 20:339–349

    Article  CAS  Google Scholar 

  • Krumholz LR (1998) Microbial ecosystems in the Earth’s subsurface. ASM News 64:197–202

    Google Scholar 

  • Kurosawa S, Ueda S (2001) Effect of colloids on radionuclide migration for performance assessment of HLW disposal in Japan. Pure Appl Chem 73:2027–2037

    CAS  Google Scholar 

  • Kwong GM (2011) Status of corrosion studies for copper used fuel containers under low salinity conditions. Nuclear Waste Management Organization Report, NWMO TR-2011-14. Toronto, Ontario

    Google Scholar 

  • Kyle JE, Eydal HSC, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450m depth of the Äspö hard rock laboratory. Sweden ISME J 2:571–574

    Article  PubMed  Google Scholar 

  • Loewen NR, Flett RJ (1984) The possible effects of microorganisms upon the mobility of radionuclides in the groundwaters of the Precambrian shield. Atomic Energy of Canada Limited Technical Report, TR-217

    Google Scholar 

  • Lovley DR (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 30:252–254

    Article  Google Scholar 

  • Lovley DR (2006) Dissimilatory Fe (III)- and Mn (IV)-reducing prokaryotes. Prokaryotes 2:635–658

    Article  Google Scholar 

  • Lovley DR, Klug MJ (1983) Sulphate reducers can outcompete methanogens at freshwater sulphate concentrations. Appl Environ Microbiol 45:187–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Lucht LM, Stroes-Gascoyne S, Miller SH, Hamon CJ, Dixon DA (1997) Colonization of compacted backfill materials by microorganisms. Atomic Energy of Canada Limited Report, AECL-11832, COG-97-321-I

    Google Scholar 

  • Maak P, Birch K, Simmons GR (2010) Evaluation of container placement methods for the conceptual design of a deep geological repository. Nuclear Waste Management Organization Report, NWMO TR-2010-20, Toronto, ON

    Google Scholar 

  • Masurat P, Eriksson S, Pedersen K (2010a) Evidence of indigenous sulphate-reducing bacteria in commercial Wyoming bentonite MX-80. Appl Clay Sci 47:51–57

    Article  CAS  Google Scholar 

  • Masurat P, Eriksson S, Pedersen K (2010b) Microbial sulphide production in a compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste. Appl Clay Sci 47:58–64

    Article  CAS  Google Scholar 

  • Mauclaire L, McKenzie JA, Schwyn B, Bossart P (2007) Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory). Phys Chem Earth 32:232–240

    Article  Google Scholar 

  • McCollom TM, Amend JP (2005) A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 3:135–144

    Article  CAS  Google Scholar 

  • McKinley IG, Hagenlocher I, Alexander WR, Schwyn B (1997) Microbiology in nuclear waste disposal: interfaces and reaction fronts. FEMS Microbiol Rev 20:545–556

    Article  CAS  PubMed  Google Scholar 

  • McMurry J, Dixon DA, Garroni JD, Ikeda BM, Stroes-Gascoyne S, Baumgartner P, Melnyk TW (2003) Evolution of a Canadian deep geologic repository: base scenario. AECL Report No: 06819-REP-01200-10092-R00

    Google Scholar 

  • Meike A, Stroes-Gascoyne S (2000) Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository. Atomic Energy of Canada Limited Report AECL-12101. Pinawa, Canada

    Google Scholar 

  • Merroun JL, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1999) Is H2 the universal energy source for long-term survival? Microb Ecol 38:307–320

    Article  CAS  PubMed  Google Scholar 

  • Motamedi M, Karland O, Pedersen K (1996) Survival of sulphate reducing bacteria at different water activities in compacted bentonite. FEMS Microbiol Lett 141:83–87

    Article  CAS  Google Scholar 

  • Newby DT, Reed DW, Petzke LM, Igoe AL, Delwiche ME, Roberto FF, McKinley JP, Whiticar MJ, Colwell FS (2004) Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol Ecol 48:333–344

    Article  CAS  PubMed  Google Scholar 

  • OECD (2012) The post-closure radiological safety case for a spent fuel repository in Sweden: An International Peer Review of the SKB Licence-application Study of March 2011. Nuclear Energy Agency, Organisation for Economic Co-operation and Development. NEA Report No. 7084. ISBN 978-92-64-99191-0

    Google Scholar 

  • Ohnuki T, Kozai N, Sakamoto F, Ozaki T, Nankawa T, Suzuki Y, Francis AJ (2010) Association of actinides with microorganisms and clay: Implications for radionuclide migration from waste-repository sites. Geomicrobiol J 27:225–230

    Article  CAS  Google Scholar 

  • Onofrei M, Gray MN, Roe LH (1991) Superplasticizer function and sorption in high performance cement-based grouts. Swedish Nuclear Fuel and Waste Management Company Stripa Project Report, SKB-TR-91-21. Also Atomic Energy of Canada Limited Report, AECL-10141, COG-91-293, 1992

    Google Scholar 

  • Onstott TC, Colwell FS, Kieft TL, Murdoch L, Phelps TJ (2009) New horizons for deep subsurface microbiology. Microbe 4:499–505

    Google Scholar 

  • Ortiz L, Volckaert G, Mallants D (2002) Gas generation and migration in Boom Clay, a potential host rock formation for nuclear waste storage. Eng Geol 64:287–296

    Article  Google Scholar 

  • Pedersen K (1993a) Bacterial processes in nuclear waste disposal. Microbiol Eur 1:18–23

    Google Scholar 

  • Pedersen K (1993b) The deep subterranean biosphere. Earth Sci Rev 34:42–47

    Article  Google Scholar 

  • Pedersen K (1996) Investigations of subterranean bacteria in deep crystalline bedrock and their importance for the disposal of nuclear waste. Can J Microbiol 42:382–391

    Article  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414

    Article  CAS  Google Scholar 

  • Pedersen KA (1999a) Evidence for a hydrogen-driven, intro-terrestrial biosphere in deep granitic rock aquifers. Microbial biosystems: New Frontiers. In: Bell CR, Brylinski M, Johnson-Green P (eds.) Proceedings of the 8th annual symposium of microbial ecology. Atlantic Society for Microbial Ecology, Halifax, NS, Canada

    Google Scholar 

  • Pedersen KA (1999b) Subterranean microorganisms and radioactive waste disposal in Sweden. Eng Geol 52:163–176

    Article  Google Scholar 

  • Pedersen K (2000) Microbial processes in radioactive waste disposal. SKB technical report TR-00-04. April 2000

    Google Scholar 

  • Pedersen KA (2010) Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulphate-reducing bacteria. J Appl Microbiol 108:1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K, Albinsson Y (1992) Possible effects of bacteria on trace element migration in crystalline bed-rock. Radiochim Acta 58(59):365–369

    Google Scholar 

  • Pedersen K, Ekendahl S (1992a) Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb Ecol 23:1–14

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K, Ekendahl S (1992b) Distribution and activity of bacteria in deep granitic groundwaters of south-eastern Sweden. Microb Ecol 20:37–52

    Article  Google Scholar 

  • Pedersen K, Motamedi M, Karnland O, Sanden T (2000a) Cultivability of microorganisms introduced into a compacted bentonite clay buffer under high-level radioactive waste repository conditions. Eng Geol 58:149–161

    Article  Google Scholar 

  • Pedersen K, Motamedi M, Karnland O, Sanden T (2000b) Mixing and sulphate-reducing activity of bacteria in swelling, compacted bentonite clay under high-level radioactive waste repository conditions. J Appl Microbiol 89:1038–1047

    Article  CAS  PubMed  Google Scholar 

  • Phelps TJ, Murphy EM, Pfiffner SM, White DC (1994) Comparison between geochemical and biological estimates of subsurface microbial activities. Microb Ecol 28:335–349

    Article  CAS  PubMed  Google Scholar 

  • Poulain S, Le Marrec C, Altmann S (2008) Microbial investigations in Opalinus clay, an argillaceous formation under evaluation as a potential host rock for a radioactive waste repository. Geomicrobiol J 25:240–249

    Article  CAS  Google Scholar 

  • Pusch R, Weston R (2003) Microstructural stability controls the hydraulic conductivity of smectitic buffer clay. Appl Clay Sci 23:35–41

    Article  CAS  Google Scholar 

  • Rainey FA, Ray K, Ferreira M, Gatz BZ, Fernanda Nobre M, Gagaley D, Rash BA, Park M-J, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer PK, Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Stetler LD, Peyton BM, Sani RK (2009) Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake Gold Mine, South Dakota. USA J Microbiol 47:371–384

    Article  PubMed  Google Scholar 

  • Schwartz E, Friedrich B (2006) The H2-metabolizing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt (Eds) The prokaryotes, Vol 2, Ecophysiology and biochemistry. Chapter 1.17. Springer, New York

    Google Scholar 

  • Sharp AA, Cunningham AB, Komlos J, Billmayer J (1999) Observation of thick biofilm accumulation and structure in porous media and corresponding hydrodynamic and mass transfer effects. Water Sci Technol 3:1195–1201

    Google Scholar 

  • Sheng XX, Ting UP, Pehkonen SA (2007) The influence of sulphate-reducing bacteria bioflim on the corrosion of stainless steel AISI 316. Corrosion Sci 49:2159–2176

    Article  CAS  Google Scholar 

  • Sheppard MI, Stroes-Gascoyne S, Motycka M, Haveman SA (1997) The influence of the presence of sulphate on methanogenesis in the backfill of a Canadian nuclear fuel waste disposal vault; A laboratory study. Atomic Energy of Canada Limited Report, AECL-11764, COG-97–21-I

    Google Scholar 

  • Sherwood Lollar B (2011) Far-field microbiology considerations relevant to a deep geological repository—State of Science review. Nuclear Waste Management Organization, Techncial Report NWMO TR-2011-09. Toronto, ON

    Google Scholar 

  • Smart N, Rance A, Reddy B, Lydmark S, Pedersen K, Lilja C (2011) Further studies of in situ corrosion testing of miniature copper–cast iron nuclear waste canisters. Corrosion Eng Sci Technol 46:142–147

    Article  CAS  Google Scholar 

  • Smellie JAT, Karlsson F, Alexander WR (1997) Natural analogue studies: present status and performance assessment implications. J Contam Hydrol 26:3–17

    Article  CAS  Google Scholar 

  • Stevens T (1997) Lithoautotrophy in the subsurface. FEMS Microbiol Rev 20:327–337

    Article  CAS  Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–453

    Article  CAS  Google Scholar 

  • Stewart LS (1938) Isolation of halophilic bacteria from soil, water, and dung. J Food Sci 3:417–420

    Article  Google Scholar 

  • Stroes-Gascoyne, S. 1989. The Potential for Microbial Life in a Canadian High-Level Nuclear Fuel Waste Disposal Vault: A Nutrient and Energy Source Analysis. Atomic Energy of Canada Limited Report, AECL-9574

    Google Scholar 

  • Stroes-Gascoyne S (1997) Microbial aspects of the Canadian used fuel disposal concept—Status of current knowledge from applied experiments. Atomic Energy of Canada Limited Report, 06819-REP-01200-0026-R00

    Google Scholar 

  • Stroes-Gascoyne S (2005) A review of international experience with microbial activity in bentonite-based sealing materials and argillacous host rocks. Atomic Energy of Canada Limited. Report No: 06819-REP-01300-10109-R00

    Google Scholar 

  • Stroes-Gascoyne S (2010) Microbial occurrence in bentonite-based buffer, backfill and sealing materials from large-scale experiments at AECL’s Underground Research Laboratory. Appl Clay Sci 47:36–42

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Gascoyne M (1998) The introduction of microbial nutrients into a nuclear waste disposal vault during excavation and operation. Environ Sci Technol 32:317–326

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ (2008) Preliminary microbial analysis of limestone and shale rock samples. Nuclear Waste Management Organization, NWMO TR-2008-09, Toronto, ON

    Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ (2008b) The effect of intermediate dry densities (1.1–1.5 g/cm3) and intermediate porewater salinities (60–90 g NaCl/L) on the culturability of heterotrophic aerobic bacteria in compacted 100 % bentonite. Nuclear Waste Management Organization, NWMO TR-2008-11, Toronto, ON

    Google Scholar 

  • Stroes-Gascoyne S, King F (2002) Microbiologically influenced corrosion issues in high-level nuclear waste repositories. In: Little B (Eds.) Proceedings of CORROSION/ 2002 Research Topical Symposium Microbiologically Influenced Corrosion. NACE International, Houston, TX, p. 79

    Google Scholar 

  • Stroes-Gascoyne S, West JM (1996) An overview of microbial research related to high-level nuclear waste disposal with emphasis on the Canadian concept for the disposal of nuclear fuel waste. Can J Microbiol 42:349–366

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, West JM (1997) Microbial studies in the Canadian nuclear fuel waste management program. FEMS Microbiol Rev 20:573–590

    Article  CAS  PubMed  Google Scholar 

  • Stroes-Gascoyne S, Lucht LM, Borsa J, Delaney TL, Haveman SA, Hamon CJ (1995) Radiation resistance of the natural microbial population in buffer materials. Mater Res Soc Symp Proc 353:345–352

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Gascoyne M, Onagi D, Thomas DA, Hamon CJ, Watson R, Porth RJ (1996) Introduction of microbial nutrients in a nuclear fuel waste disposal vault as a result of excavation and operation activities. Atomic Energy of Canada Limited Report, AECL-11532, COG-96-14

    Google Scholar 

  • Stroes-Gascoyne S, Haveman SA, Vilks P (1997a) The change in bioavailability of organic matter associated with clay-based buffer material as a result of heat and radiation treatment. Mater Res Soc Symp Proc 465:987–994

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Pedersen K, Haveman SA, Dekeyser K, Arlinger J, Daumas S, Ekendahl S, Hallbeck L, Hamon CJ, Jahromi N, Delaney T-L (1997b) Occurrence and identification of organisms in compacted clay-based buffer material designed for use in nuclear fuel waste disposal vault. Can J Microbiol 43:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Stroes-Gascoyne S, Haveman SA, Hamon CJ, Ticknor KV (2000) Analysis of biofilms grown in situ at AECL’s Underground Research Laboratory on Granite, Titanium and Copper Coupons. Atomic Energy of Canada Limited Report, AECL-12098

    Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ, Vilks P, Gierszewski P (2002) Microbial, redox and organic characteristics of compacted clay-based buffer after 6.5 years of burial at AECL’s Underground Research Laboratory. Appl Geochem 17:1287–1303

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ, Kohle C, Dixon DA (2006). The effects of dry density and porewater salinity on the physical and microbiological characteristics of highly compacted bentonite. Ontario Power Generation, Nuclear Waste Management Division Report 06819-REP-01200-10016-R00

    Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ, Dixon DA, Martino JB (2007a) Microbial analysis of samples from the tunnel sealing experiments at AECL’s Underground Research Laboratory. Phys Chem Earth 32:219–231

    Article  Google Scholar 

  • Stroes-Gascoyne S, Maak P, Hamon CJ, Kohle C. (2007b). Potential implications of microbes and salinity on the design of repository sealing system components. NWMO TR-2007-10

    Google Scholar 

  • Stroes-Gascoyne S, Schippers A, Schwyn B, Poulain S, Sergeant C, Simanoff M, Le Marrec C, Altmann S, Nagaoka T, Mauclaire L, McKenzie J, Daumas S, Vinsot A, Beaucaire C, Matray S-M (2007c) Microbial community analysis of Opalinus Clay drill core samples from the Mont Terri Underground Research Laboratory. Switzerland Geomicrobiol J 24:1–17

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ, Dixon DA, Priyanto DG (2010a) The effect of CaCl2 Porewater Salinity (50–100 g/L) on the culturability of heterotrophic aerobic bacteria in compacted 100 % bentonite with dry densities of 0.8 and 1.3 g/cm3. Nuclear Waste Management Organization, NWMO TR-2010-06, Toronto, ON

    Google Scholar 

  • Stroes-Gascoyne S, Hamon CJ, Maak P, Russell S (2010b) The effects of the physical properties of highly compacted smectitic clay (bentonite) on the culturability of indigenous microorganisms. Appl Clay Sci 47:155–162

    Article  CAS  Google Scholar 

  • Stroes-Gascoyne S, Sergeant C, Schippers A, Hamon CJ, Nèble S, Vesvres M-H, Barsotti V, Poulain S, Le Marrec C (2011) Biogeochemical processes in a clay formation in situ experiment: Part D—Microbial analyses—synthesis of results. Appl Geochem 26:980–989

    Article  CAS  Google Scholar 

  • Suzuki Y, Banfield J (2004) Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiol J 21:113–121

    Article  CAS  Google Scholar 

  • Thorn PM, Ventullo RM (1988) Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA. Microb Ecol 16:3–16

    Article  CAS  PubMed  Google Scholar 

  • Tufenkji N, Ryan JN, Elimelech M (2002) The promise of bank filtration. Environ Sci Technol 36:422A–428A

    Article  CAS  PubMed  Google Scholar 

  • Uberoi V, Bhattacharya SK (1995) Interactions among sulphate reducers, acetogens, and methanogens in anaerobic propionate systems. Water Environ Res 67:330–339

    Article  CAS  Google Scholar 

  • Vandergraaf TT, Miller HG, Jain DK, Hamon CJ, Stroes-Gascoyne S (1997) The effect of biofilms on radionuclide transport in the geosphere: Results from an initial investigation. Atomic Energy of Canada Limited Technical Record, TR-774, COG-96-635-I

    Google Scholar 

  • Vieira R, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiology 3:17–24

    CAS  Google Scholar 

  • Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles 2:321–331

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Francis AJ (2005) Evaluation of microbial activity for long-term performance assessments of deep geologic nuclear waste repositories. J Nucl Radiochem Proc 6:43–50

    Article  CAS  Google Scholar 

  • Wersin P, Spahiu K, Bruno J (1994) Time evolution of dissolved oxygen and redox conditions in a HLW repository. Swedish Nuclear Fuel and Waste Management Company Technical Report, TR 94–02

    Google Scholar 

  • Wersin P, Johnson LH, McKinley IG (2007) Performance of the bentonite barrier at temperatures beyond 100 °C: a critical review. Phys Chem Earth 32:780–788

    Article  Google Scholar 

  • Wersin P, Stroes-Gascoyne S, Pearson FJ, Tournassat C, Leupin OX, Schwyn B (2011) Biogeochemical processes in a clay formation in-situ experiment: Part G—key interpretations & conclusions. Implications for repository safety. Appl Geochem 26(6):1023–1034

    Article  CAS  Google Scholar 

  • West JM, McKinley IG (2002) The geomicrobiology of radioactive waste disposal. In: Bitton G (ed) The encyclopaedia of environmental microbiology. Wiley, New York, pp 2661–2674

    Google Scholar 

  • West JM, McKinley IG, Stroes-Gascoyne S (2002) Microbial effects on waste repository materials. In: Keith-Roach M, Livens F (eds) Interactions of microorganisms with radionuclides. Elsevier Sciences, Oxford, UK, pp 255–277

    Chapter  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins MJ, Livens FR, Vaughan DJ, Lloyd JR (2006) The impact of Fe(III) reducing bacteria on uranium mobility. Biogeochemistry 78:125–150

    Article  CAS  Google Scholar 

  • Wilkins MJ, Livens FR, Vaughan DJ, Beadle I, Lloyd JR (2007) The influence of microbial redox cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site. Geobiology 5:293–301

    Article  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Korber DR (2007) Cultivation of microbial communities. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenback LD (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, DC, pp 101–111

    Google Scholar 

  • Xu LC, Fang HHP, Chan KY (1999) Atomic force micrsoscopy study of microbiologically influenced corrosion of mild steel. J Electrochem Soc 146:4455–5560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. McKelvie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McKelvie, J.R., Korber, D.R., Wolfaardt, G.M. (2016). Microbiology of the Deep Subsurface Geosphere and Its Implications for Used Nuclear Fuel Repositories. In: Hurst, C. (eds) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28071-4_7

Download citation

Publish with us

Policies and ethics