Skip to main content
Log in

Abundance and Diversity of Biofilms in Natural and Artificial Aquifers of the Äspö Hard Rock Laboratory, Sweden

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Six cores were drilled and retrieved from 186-m depth in the Äspö Hard Rock Laboratory (HRL) tunnel to investigate whether indigenous biofilms develop on fracture surfaces in groundwater-conducting aquifers in granitic rock. A clone library was constructed from fracture surface material (FSM), for community composition analysis. Quantitative polymerase chain reaction (qPCR) was applied to quantify gene copies using the 16S rRNA gene for domain Bacteria and the adenosine-phosphosulfate reductase gene (apsA) for sulfate-reducing bacteria (SRB). Results were compared with three groundwater systems with biofilms in laminar flow reactors (LFRs) at 450-m depth in the Äspö HRL. The total number of cells, counted microscopically, was approximately 2 × 105 cells cm–2 in the LFR systems, consistent with the obtained qPCR 16S rRNA gene copies. qPCR analysis reported ∼1 × 102 up to ∼1 × 104 gene copies cm–2 on the FSM from the drill cores. In the FSM biofilms, 33% of the sequenced clones were related to the iron-reducing bacterium Stenotrophomonas maltophilia, while in the LFR biofilms, 41% of the sequenced clones were affiliated with the genera Desulfovibrio, Desulforhopalus, Desulfomicrobium, and Desulfobulbus. The community composition of the FSM biofilms differed from the drill water community, excluding drill water contamination. This work reports significant numbers of microorganisms on natural hard rock aquifer fracture surfaces with site-specific community compositions. The probability that biofilms are generally present in groundwater-conducting aquifers in deep granitic rock is consequently great.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aburto A, Fahy A, Coulon F, Lethbridge G, Timmis KN, Ball AS, McGenity TJ (2009) Mixed aerobic and anaerobic microbial communities in benzene-contaminated groundwater. J Appl Microbiol 106:317–328

    Article  CAS  PubMed  Google Scholar 

  2. Altschul F (1985) Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. Mol Biol Evol 2:526–538

    CAS  PubMed  Google Scholar 

  3. Anderson C, Jakobsson A-M, Pedersen K (2007) Influence of in situ biofilm coverage on the radionuclide adsorption capacity of subsurface granite. Environ Sci Technol 41:830–836

    Article  CAS  PubMed  Google Scholar 

  4. Anderson C, Pedersen K, Jakobsson A-M (2006) Autoradiographic comparisons of radionuclide adsorption between subsurface anaerobic biofilms and granitic host rocks. Geomicrobiol J 23:15–29

    Article  CAS  Google Scholar 

  5. Ben-Dov E, Brenner A, Kushmaro A (2007) Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microb Ecol 54:439–451

    Article  CAS  PubMed  Google Scholar 

  6. Bitton G, Marshall KC (1980) Adsorption of microorganisms to surfaces. John Wiley & Sons, New York, pp 1–439

    Google Scholar 

  7. Characklis WG, Marshall KC (1990) Biofilms. Wiley, New York, pp 1–796

    Google Scholar 

  8. Ekendahl S, Arlinger J, Ståhl F, Pedersen K (1994) Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine with 16S-rRNA gene sequencing technique and scanning electron microscopy. Microbiology 140:1575–1583

    Article  CAS  PubMed  Google Scholar 

  9. Eydal HSC, Jägevall S, Hermansson M, Pedersen K (2009) Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J 3:1139–1147

    Article  PubMed  Google Scholar 

  10. Ferrera I, Massana R, Casamayor E, Balagué V, Sánchez O, Pedrós-Alió C, Mas J (2004) High-diversity biofilm for the oxidation of sulphide-containing effluents. Appl Microbiol Biotechnol 64:726–734

    Article  CAS  PubMed  Google Scholar 

  11. Ferris FG, Konhauser KO, Lyuvén B, Pedersen K (1999) Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiol J 16:181–192

    Article  CAS  Google Scholar 

  12. Fredrickson JK, Fletcher M (2001) Subsurface microbiology and biogeochemistry. Wiley-Liss Inc, New York, p 341

    Google Scholar 

  13. Hallbeck L, Pedersen K (2008) Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl Geochem 23:1796–1819

    Article  CAS  Google Scholar 

  14. Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed  Google Scholar 

  15. Keith-Roach MJ, Livens FR (2002) Interactions of microorganisms with radionuclides. Elsevier, Amsterdam, p 400

    Google Scholar 

  16. Kyle JE, Eydal HSC, Ferris FG, Pedersen K (2008) Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J 2:571–574

    Article  PubMed  Google Scholar 

  17. Lane DJ (1991) 16S/23S rDNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd., West Sussex, pp 115–175

    Google Scholar 

  18. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  PubMed  Google Scholar 

  19. Lee ZM-P, Bussema C, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37:D489–D493

    Article  CAS  PubMed  Google Scholar 

  20. Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Camebrige, pp 1–156

    Google Scholar 

  21. Motamedi M, Pedersen K (1998) Desulfovibrio aespoeensis sp. nov. a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int J Syst Bacteriol 48:311–315

    Article  PubMed  Google Scholar 

  22. Nielsen ME, Pedersen K, Fisk M, Istok J (2006) Microbial nitrate respiration of lactate at in situ conditions in groundwater from a granitic aquifer situated 450 m underground. Geobiology 4:43–52

    Article  CAS  Google Scholar 

  23. Pedersen K (1993) The deep subterranean biosphere. Earth Sci Rev 34:243–260

    Article  CAS  Google Scholar 

  24. Pedersen K (1997) Microbial life in granitic rock. FEMS Microbiol Rev 20:399–414

    Article  CAS  Google Scholar 

  25. Pedersen K (2000) Exploration of deep intraterrestrial life—current perspectives. FEMS Microbiol Lett 185:9–16

    Article  CAS  PubMed  Google Scholar 

  26. Pedersen K (2001) Diversity and activity of microorganisms in deep igneous rock aquifers of the Fennoscandian Shield. In: Fredrickson JK, Fletcher M (eds) Subsurface microbiology and biogeochemistry. Wiley-Liss Inc., New York, pp 97–139

    Google Scholar 

  27. Pedersen K (2003) Past and present biofilm formation in deep Fennoscandian shield groundwater. In: Krumbein W, Paterson DM, Zavarzin GA (eds) Fossile and recent Biofilms. A natural history of life on earth. Kluwer Academic Publishers, Dordrecht, pp 371–380

    Google Scholar 

  28. Pedersen K, Arlinger J, Ekendahl S, Hallbeck L (1996) 16S rRNA gene diversity of attached and unattached groundwater bacteria along the access tunnel to the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 19:249–262

    CAS  Google Scholar 

  29. Pedersen K, Arlinger J, Hallbeck A, Hallbeck L, Eriksson S, Johansson J (2008) Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland. ISME J 2:760–775

    Article  CAS  PubMed  Google Scholar 

  30. Pedersen K, Ekendahl S (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb Ecol 20:37–52

    Article  Google Scholar 

  31. Pedersen K, Ekendahl S (1992) Incorporation of CO2 and introduced organic compounds by bacterial populations in groundwater from the deep crystalline bedrock of the Stripa mine. J Gen Microbiol 138:369–376

    CAS  Google Scholar 

  32. Pedersen K, Ekendahl S (1992) Assimilation of CO2 and introduced organic compounds by bacterial communities in ground water from Southeastern Sweden deep crystalline bedrock. Microb Ecol 23:1–14

    Article  CAS  Google Scholar 

  33. Pedersen K, Ekendahl S, Tullborg E-L, Furnes H, Thorseth I-G, Tumyr O (1997) Evidence of ancient life at 207 m depth in a granitic aquifer. Geology 25:827–830

    Article  CAS  PubMed  Google Scholar 

  34. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen J (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  Google Scholar 

  35. Yu L, Liu Y, Wang G (2008) Identification of a novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater. Biodegradation 20:391–400

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Anna Pääjärvi and Johanna Edlund at Microbial Analytics Sweden AB for sampling at the Äspö HRL and for laboratory assistance with cloning and qPCR. Mikael Gustavsson, MiRo Diamanthåltagning AB, and Mikael Hedin executed the professional work of drilling and core retrieval. This work was funded by the Swedish Nuclear Fuel and Waste Management Co. and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Jägevall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

 (DOC 410 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jägevall, S., Rabe, L. & Pedersen, K. Abundance and Diversity of Biofilms in Natural and Artificial Aquifers of the Äspö Hard Rock Laboratory, Sweden. Microb Ecol 61, 410–422 (2011). https://doi.org/10.1007/s00248-010-9761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9761-z

Keywords

Navigation