Skip to main content

Methods and Instrumentation in Mass Spectrometry for the Differentiation of Closely Related Microorganisms

  • Chapter
  • First Online:
Applications of Mass Spectrometry in Microbiology

Abstract

While mass spectrometry (MS) is now an accepted tool for the routine analysis of microorganisms, new applications using MS are now tackling more complex problems in microbiology. The successful application of MS for the analysis of microorganisms involves a concerted selection of hardware along with the development of methodology. This chapter will focus on this interplay between MS instrumentation and methodology for the analysis of closely related bacteria at the strain level and antibiotic-resistant/susceptible bacteria. An overview of the MS instrumentation will be presented in the context of microorganism detection and identification with selected examples from the current scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar M-I. HPLC of peptides and proteins: methods and protocols. Totowa: Humana Press; 2004.

    Google Scholar 

  • Alatoom AA, Cunningham SA, Ihde SM, Mandrekar J, Patel R. Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(8):2868–73.

    Article  Google Scholar 

  • Alvarez MTB, Shah DJ, Thulin CD, Graves SW. Tissue proteomics of the low-molecular weight proteome using an integrated cLC-ESI-QTOFMS approach. Proteomics. 2013;13(9):1400–11.

    Article  CAS  Google Scholar 

  • Alvarez-Buylla A, Picazo JJ, Culebras E. Optimized method for Acinetobacter species carbapenemase detection and identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013 51:1589–92.

    Article  CAS  Google Scholar 

  • Anhalt JP, Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem. 1975:47(2):219–25.

    Article  CAS  Google Scholar 

  • Basile F. Rapid sample preparation for microorganism analysis by mass spectrometry. In Fenselau C, Demirev P, Editors. Rapid characterization of microorganisms by mass spectrometry. ACS symposium series; American Chemical Society: Washington, DC. vol. 1065. 2011. pp 5–34.

    Google Scholar 

  • Basile F, Ferrer I, Furlong ET, Voorhees KJ. Simultaneous multiple substrate tag detection with ESI-Ion trap MS for in vivo bacterial enzyme activity profiling. Anal Chem. 2002;74(16):4290–3.

    Article  CAS  Google Scholar 

  • Basile F, Kassalainen GE, Ratanathanawongs Williams SK. Interface for direct and continuous sample–matrix deposition onto a MALDI probe for polymer analysis by thermal field flow fractionation and off-line MALDI-MS. Anal Chem. 2005;77(9):3008–12.

    Article  CAS  Google Scholar 

  • Benkali K, Marquet P, Rérolle JP, Meur YL, Gastinel LN. A new strategy for faster urinary biomarkers identification by Nano-LC-MALDI-TOF/TOF mass spectrometry. BMC Genomics. 2008;9(1):541.

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. The complete genome sequence of Escherichia coli K-12. Science. 1997;277(5331):1453–62.

    Article  CAS  Google Scholar 

  • Bodnar WM, Blackburn RK, Krise JM, Moseley MA. Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/MS for increased proteome coverage. J Am Soc Mass Spectrom. 2003;14(9):971–9.

    Article  CAS  Google Scholar 

  • Boehme K, Fernandez-No IC, Pazos M, Gallardo JM, Barros-Velazquez J, Canas B, Calo-Mata P. Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS Fingerprinting. Electrophoresis. 2013;34:877–87.

    Article  CAS  Google Scholar 

  • Boon JJ, Boer WRD, Kruyssen FJ, Wouters JTM. Pyrolysis mass spectrometry of whole cells, cell walls and isolated cell wall polymers of Bacillus subtilis var. Niger WM. J Gen Microbiol. 1981;122(1):119–27.

    Google Scholar 

  • Bothner B, Chavez R, Wei J, Strupp C, Phung Q, Schneemann A, Siuzdak G. Monitoring enzyme catalysis with mass spectrometry. J Biol Chem. 2000;275(18):13455–9.

    Article  CAS  Google Scholar 

  • Boyd RK, Basic C, Bethem RA. Measurement, dimensions and units. In trace quantitative analysis by mass spectrometry. New Jersey: Wiley; 2008. pp. 6–8.

    Book  Google Scholar 

  • Bruins AP. Mechanistic aspects of electrospray ionization. J Chromatogr A. 1998;794(1):345–57.

    Article  CAS  Google Scholar 

  • Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49:3321–4.

    Article  CAS  Google Scholar 

  • Calderaro A, Piccolo G, Montecchini S, Buttrini M, Gorrini C, Rossi S, Arcangeletti MC, De Conto F, Medici MC, Chezzi C. MALDI-TOF ms analysis of human and animal Brachyspira species and benefits of database extension. J. Proteomics. 2013;78:273–80.

    Article  CAS  Google Scholar 

  • Calderaro A, Piccolo G, Gorrini C, Montecchini S, Buttrini M, Rossi S, Piergianni M, De CF, Arcangeletti MC, Chezzi C, Medici MC. Leptospira species and serovars identified by MALDI-TOF mass spectrometry after database implementation. BMC Res Notes. 2014;7:330.

    Article  CAS  Google Scholar 

  • Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2007;389:1633–8.

    Article  CAS  Google Scholar 

  • Cannon J, Lohnes K, Wynne C, Wang Y, Edwards N, Fenselau C. High-throughput middle-down analysis using an orbitrap. J Proteome Res. 2010;9(8):3886–90.

    Article  CAS  Google Scholar 

  • Cech NB, Enke CG. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev. 2001;20(6):362–87.

    Article  CAS  Google Scholar 

  • Chang C-J, Lin J-H, Chang K-C, Lai M-J, Rohini R, Hu A. Diagnosis of Β-Lactam resistance in Acinetobacter baumannii using shotgun proteomics and LC-Nano-Electrospray ionization ion trap mass spectrometry. Anal Chem. 2013;85:2802–8.

    Article  CAS  Google Scholar 

  • Chennamaneni NK, Kumar AB, Barcenas M, Spáčil Z, Scott CR, Tureček F, Gelb MH. Improved reagents for newborn screening of mucopolysaccharidosis Types I, II, and VI by tandem mass spectrometry. Anal Chem. 2014;86(9):4508–14.

    Article  CAS  Google Scholar 

  • Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26(3):547–603.

    Article  CAS  Google Scholar 

  • Cohen SL, Chait BT. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem. 1996;68(1):31–7.

    Article  CAS  Google Scholar 

  • Cole RB. Electrospray mass spectrometry: fundamentals, instrumentation, and applications. Oxford: Wiley-Blackwell; 2008.

    Google Scholar 

  • Corbin RW, Paliy O, Yang F, Shabanowitz J, Platt M, Lyons CE, Root K, McAuliffe J, Jordan MI, Kustu S, Soupene E, Hunt DF. Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci. 2003;100(16):9232–7.

    Article  CAS  Google Scholar 

  • Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407.

    Article  CAS  Google Scholar 

  • Dai Y, Whittal RM, Li L. Confocal fluorescence microscopic imaging for investigating the analyte distribution in MALDI matrices. Anal Chem. 1996;68(15):2494–500.

    Article  CAS  Google Scholar 

  • DeLuca S, Sarver EW, Harrington P de B, Voorhees KJ. Direct analysis of bacterial fatty acids by curie-point pyrolysis tandem mass spectrometry. Anal Chem. 1990;62(14):1465–72.

    Article  CAS  Google Scholar 

  • DeLuca SJ, Sarver EW, Voorhees KJ. Direct analysis of bacterial glycerides by curie-point pyrolysis-mass spectrometry. J Anal Appl Pyrolysis 1992;23(1):1–14.

    Article  CAS  Google Scholar 

  • Demirev PA, Lin JS, Pineda FJ, Fenselau C. Bioinformatics and mass spectrometry for microorganism identification:  proteome-wide post-translational modifications and database search algorithms for characterization of Intact H. Pylori. Anal Chem. 2001;73(19):4566–73.

    Article  CAS  Google Scholar 

  • Demirev PA, Feldman AB, Kowalski P, Lin JS. Top-down proteomics for rapid identification of intact microorganisms. Anal Chem. 2005;77(22):7455–61.

    Article  CAS  Google Scholar 

  • Demirev PA, Hagan NS, Antoine MD, Lin JS, Feldman AB. Establishing drug resistance in microorganisms by mass spectrometry. J Am Soc Mass Spectrom. 2013;24(8):1194–201.

    Article  CAS  Google Scholar 

  • Deng J, Fu L, Wang R, Yu N, Ding X, Jiang L, Fang Y, Jiang C, Lin L, Wang Y, Che X. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identification of seventy-three clinical isolates of enteropathogens. J Thorac Dis. 2014;6(5):539–44.

    Google Scholar 

  • Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci USA. 2013;110:2336–41 (S 2336/1–S 2336/188).

    Article  Google Scholar 

  • Everley RA, Mott TM, Wyatt SA, Toney DM, Croley TR. Liquid chromatography/mass spectrometry characterization of Escherichia coli and Shigella species. J Am Soc Mass Spectrom. 2008;19(11):1621–28.

    Article  CAS  Google Scholar 

  • Fagerquist CK. Top-down proteomic identification of bacterial protein biomarkers and toxins using MALDI-TOF-TOF-MS/MS and post-source decay. Rev Anal Chem. 2013;32(2):127–33.

    Article  CAS  Google Scholar 

  • Fagerquist CK, Garbus BR, Williams KE, Bates AH, Boyle S, Harden LA. Web-based software for rapid top-down proteomic identification of protein biomarkers, with implications for bacterial identification. Appl Environ Microbiol. 2009;75(13):4341–53.

    Article  CAS  Google Scholar 

  • Fagerquist CK, Garbus BR, Miller WG, Williams KE, Yee E, Bates AH, Boyle S, Harden LA, Cooley MB, Mandrell RE. Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight–time-of-flight mass spectrometry and top-down proteomics. Anal Chem. 2010;82(7):2717–25.

    Article  CAS  Google Scholar 

  • Fang M. Tandem mass spectrometry-based proteomics, protein characterisation and biomarker discovery in microorganisms. In Shah, H., Gharbia, S., Editors. Mass Spectrometry for Microbial Proteomics;, Wiley: Hoboken; 2010. pp. 75–6.

    Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246(4926):64–71.

    Article  CAS  Google Scholar 

  • Fleurbaaij F, Heemskerk AAM, Russcher A, Klychnikov OI, Deelder AM, Mayboroda OA, Kuijper EJ, van Leeuwen HC, Hensbergen PJ. Capillary-electrophoresis mass spectrometry for the detection of carbapenemases in (Multi-)drug-resistant gram-negative bacteria. Anal Chem. 2014;86(18):9154–61.

    Article  CAS  Google Scholar 

  • Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4(5):732–42.

    Article  CAS  Google Scholar 

  • Gerber SA, Scott CR, Turecek F, Gelb MH. Analysis of rates of multiple enzymes in cell lysates by electrospray ionization mass spectrometry. J Am Chem Soc. 1999;121(5):1102–3.

    Article  CAS  Google Scholar 

  • Gerber SA, Scott CR, Tureček F, Gelb MH. Direct profiling of multiple enzyme activities in human cell lysates by affinity chromatography/electrospray ionization mass spectrometry: application to clinical enzymology. Anal Chem. 2001;73(8):1651–57.

    Article  CAS  Google Scholar 

  • Giebel RA, Fredenberg W, Sandrin TR. Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res. 2008;42(4–5):931–40.

    Article  CAS  Google Scholar 

  • Goldstein JE, Zhang L, Borror CM, Rago JV, Sandrin, TR. Culture conditions and sample preparation methods affect spectrum quality and reproducibility during profiling of Staphylococcus aureus with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lett Appl Microbiol. 2013;57(2):144–50.

    Article  CAS  Google Scholar 

  • Goodacre R, Timmins éadaoin M, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology. 1998;144(5):1157–70.

    Article  CAS  Google Scholar 

  • Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, Hamilton B, Venter D. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 2012;50:2918–31.

    Article  CAS  Google Scholar 

  • Gross JH. Mass spectrometry a textbook. 2nd ed. Berlin: Springer; 2011.

    Book  Google Scholar 

  • Guckert JB, Hood MA, White DC. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol. 1986;52(4):794–801.

    CAS  Google Scholar 

  • Han M-J, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev. 2006;70(2):362–439.

    Article  CAS  Google Scholar 

  • Hillion M, Mijouin L, Jaouen T, Barreau M, Meunier P, Lefeuvre L, Lati E, Chevalier S, Feuilloley MGJ. Comparative study of normal and sensitive skin aerobic bacterial populations. Microbiol Open 2013;2:953–61.

    Article  CAS  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10(10):1227–32.

    Article  CAS  Google Scholar 

  • Holland RD, Duffy CR, Rafii F, Sutherland JB, Heinze TM, Holder CL, Voorhees KJ, Lay Jr JO. Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem. 1999;71(15):3226–30.

    Article  CAS  Google Scholar 

  • Holland RD, Wilkes JG, Cooper WM, Alusta P, Williams A, Pearce B, Beaudoin M, Buzatu D. Thymol treatment of bacteria prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis aids in identifying certain bacteria at the subspecies level. Rapid Commun Mass Spectrom. 2014;28(23):2617–26.

    Article  CAS  Google Scholar 

  • Hooff GP, van Kampen JJA, Meesters RJW, van Belkum, A, Goessens, WHF, Luider TM. Characterization of Β-Lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J Proteome Res. 2012;11(1):79–84.

    Article  CAS  Google Scholar 

  • Horneffer V, Forsmann A, Strupat, K, Hillenkamp, F; Kubitscheck, U. Localization of analyte molecules in MALDI preparations by confocal laser scanning microscopy. Anal Chem. 2001;73(5):1016–22.

    Article  CAS  Google Scholar 

  • Horneffer V, Haverkamp J, Janssen H-G, Notz R. MALDI-TOF-MS analysis of bacterial spores: wet heat-treatment as a new releasing technique for biomarkers and the influence of different experimental parameters and microbiological handling. J Am Soc Mass Spectrom. 2004;15(10):1444–54.

    Article  CAS  Google Scholar 

  • Hrabak J, Walkova R, Studentova V, Chudackova E, Bergerova T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2011;49:3222–7.

    Article  CAS  Google Scholar 

  • Hrabák J, Študentová V, Walková R, Žemličková H, Jakubů V, Chudáčková E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerová, T. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by Matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(7):2441–3.

    Article  CAS  Google Scholar 

  • Hrabak J, Chudackova E, Walkova R. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26:103–14.

    Article  CAS  Google Scholar 

  • Hsieh S-Y, Tseng C-L, Lee Y-S, Kuo A-J, Sun C-F, Lin Y-H, Chen J-K. Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol Cell Proteomics 2008;7(2):448–56.

    Article  CAS  Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40(4):430–43.

    Article  CAS  Google Scholar 

  • Huff SM, Matsen JM, Windig, W, Meuzelaar HLC. Pyrolysis mass spectrometry of bacteria from infected human urine. I. Influence of culturing and antibiotics. Biol Mass Spectrom. 1986;13(6):277–86.

    Google Scholar 

  • Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ. Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods 2005;62(3):273–84.

    Article  CAS  Google Scholar 

  • Jaskolla TW, Karas M. Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom. 2011;22(6):976–88.

    Article  CAS  Google Scholar 

  • Jung JS, Eberl T, Sparbier K, Lange C, Kostrzewa M, Schubert S, Wieser A. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect Dis. 2014;33:949–55.

    Article  CAS  Google Scholar 

  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–301.

    Article  CAS  Google Scholar 

  • Karlsson C, Malmström L, Aebersold R, Malmström J. Proteome-wide selected reaction monitoring assays for the human pathogen streptococcus pyogenes. Nat Commun. 2012;3:1301.

    Article  CAS  Google Scholar 

  • Karpanoja P, Harju I, Rantakokko-Jalava K, Haanpera M, Sarkkinen H. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of viridans group streptococci. Eur J Clin Microbiol Infect Dis. 2014;33:779–88.

    Article  CAS  Google Scholar 

  • Kempf M, Bakour S, Flaudrops C, Berrazeg M, Brunel J-M, Drissi M, Mesli E, Touati A, Rolain J-M. Rapid detection of carbapenem resistance in acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS ONE 2012;7:e31676.

    Article  CAS  Google Scholar 

  • Kern CC, Vogel RF, Behr J. Differentiation of Lactobacillus brevis strains using matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry with respect to their beer spoilage potential. Food Microbiol. 2014;40:18–24.

    Article  CAS  Google Scholar 

  • Kierzkowska M, Majewska A, Kuthan RT, Sawicka-Grzelak A, Mlynarczyk G. A Comparison of Api 20A vs. MALDI-TOF MS for routine identification of clinically significant anaerobic bacterial strains to the species level. J Microbiol Methods 2013;92:209–212.

    Article  CAS  Google Scholar 

  • Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, Kostrzewa M, Mares M, Taj-Aldeen SJ; Boekhout T. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:2491–500.

    Article  CAS  Google Scholar 

  • Laiko VV, Baldwin MA, Burlingame AL. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2000;72(4):652–7.

    Article  CAS  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.

    Article  Google Scholar 

  • Lartigue M-F. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect Genet Evol. 2013;13:230–5.

    Article  CAS  Google Scholar 

  • Lasch P, Nattermann H, Erhard M, Stämmler M, Grunow R, Bannert N, Appel B, Naumann D. MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microbial cells and spores. Anal Chem. 2008;80(6):2026–2034.

    Article  CAS  Google Scholar 

  • LeDuc RD, Taylor GK, Kim Y-B, Januszyk TE, Bynum LH, Sola JV, Garavelli JS, Kelleher NL. ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res. 2004;32(suppl 2):W340–W345.

    Article  CAS  Google Scholar 

  • Li Y, Gu B, Liu G, Xia W, Fan K, Mei Y, Huang P, Pan S. MALDI-TOF MS versus VITEK 2 ANC card for identification of anaerobic bacteria. J Thorac Dis. 2014;6:517–23.

    Google Scholar 

  • Liu H, Du Z, Wang J, Yang R. Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2007;73(6):1899–907.

    Article  CAS  Google Scholar 

  • Londry FA, Hager JW. Mass selective axial ion ejection from a linear quadrupole ion trap. J Am Soc Mass Spectrom. 2003;14(10):1130–47.

    Article  CAS  Google Scholar 

  • Machen A, Kobayashi M, Connelly MR, Wang YF (Wayne). Comparison of heat inactivation and cell disruption protocols for identification of mycobacteria from solid culture media by use of vitek matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51(12):4226–9.

    Article  CAS  Google Scholar 

  • Madonna AJ, Basile F, Ferrer I, Meetani MA, Rees JC, Voorhees KJ. On-probe sample pretreatment for the detection of proteins above 15 KDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14(23):2220–9.

    Article  CAS  Google Scholar 

  • Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM. Detection of cyclic lipopeptide biomarkers from bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2003;75(7):1628–37.

    Article  CAS  Google Scholar 

  • Majcherczyk PA, McKenna T, Moreillon P, Vaudaux P. The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 2006;255:233–9.

    Article  CAS  Google Scholar 

  • Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem. 2000;72(6):1156–62.

    Article  CAS  Google Scholar 

  • Maltman DJ, Brand S, Belau E, Paape R, Suckau D, Przyborski SA. Top-down Label-Free LC-MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers. Proteomics 2011;11(20):3992–4006.

    Article  CAS  Google Scholar 

  • Marcus K, Schäfer H, Klaus S, Bunse C, Swart R, Meyer HE. A new fast method for nanoLC–MALDI-TOF/TOF–MS analysis using monolithic columns for peptide preconcentration and separation in proteomic studies. J Proteome Res. 2007;6(2):636–43.

    Article  CAS  Google Scholar 

  • Martinez AR, Abranches J, Kajfasz JK, Lemos JA. Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Mol Oral Microbiol. 2010;25(5):331–42.

    Article  CAS  Google Scholar 

  • Mc Dermott PF, Walker RD, White DG. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol. 2003;22(2):135–43.

    Article  CAS  Google Scholar 

  • McFarland MA, Andrzejewski D, Musser SM, Callahan JH. Platform for identification of Salmonella serovar differentiating bacterial proteins by top-down mass spectrometry: S. Typhimurium vs S. Heidelberg. Anal Chem. 2014;86(14):6879–86.

    Article  CAS  Google Scholar 

  • McLafferty FW, Tureek F. Interpretation of mass spectra. 4th ed. University Science Books. Calif: Mill Valley; 1993.

    Google Scholar 

  • Meuzelaar HLC, Kistemaker PG. Technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry. Anal Chem. 1973;45(3):587–90.

    Article  CAS  Google Scholar 

  • Mitchell P. Proteomics retrenches. Nat Biotechnol. 2010;28(7):665–70.

    Article  CAS  Google Scholar 

  • Mott TM, Everley RA, Wyatt SA, Toney DM, Croley TR. Comparison of MALDI-TOF/MS and LC-QTOF/MS methods for the identification of enteric bacteria. Int J Mass Spectrom. 2010;291(1–2):24–32.

    Article  CAS  Google Scholar 

  • Murphy RC, Fiedler J, Hevko J. Analysis of nonvolatile lipids by mass spectrometry. Chem Rev. 2001;101(2):479–526.

    Article  CAS  Google Scholar 

  • Murugaiyan J, Weise C, von BM, Roesler U. Two-dimensional proteome reference map of Prototheca zopfii revealed reduced metabolism and enhanced signal transduction as adaptation to an infectious life style. Proteomics 2013;13:2664–9.

    Article  CAS  Google Scholar 

  • Neubert H, Halket JM, Ocaña MF, Patel RKP. MALDI post-source decay and LIFT-TOF/TOF investigation of α-Cyano-4-Hydroxycinnamic acid cluster interferences. J Am Soc Mass Spectrom. 2004;15(3):336–43.

    Article  CAS  Google Scholar 

  • Nguyen S, Fenn JB. Gas-Phase ions of solute species from charged droplets of solutions. Proc Natl Acad Sci. 2007;104(4):1111–7.

    Article  CAS  Google Scholar 

  • Pereira L, Dias N, Santos C, Lima N. The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing. Enferm Infecc Microbiol Clin. 2014:32:11–7.

    Article  Google Scholar 

  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9(6):555–66.

    Article  CAS  Google Scholar 

  • Price P. Standard definitions of terms relating to mass spectrometry. J Am Soc Mass Spectrom. 1991;2(4):336–48.

    Article  CAS  Google Scholar 

  • Prieto MC. Erratum to: MALDI-TOF-MS analysis of bacterial spores: wet heat-treatment as a new releasing technique for biomarkers and the influence of different experimental parameters and microbiological handling. J Am Soc Mass Spectrom. 2006;17(9):1323–3.

    Article  CAS  Google Scholar 

  • Queenan AM, Bush K. Carbapenemases: the versatile -lactamases. Clin Microbiol Rev. 2007;20(3):440–58.

    Article  CAS  Google Scholar 

  • Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73(4):746–50.

    Article  CAS  Google Scholar 

  • Sandrin TR, Goldstein JE; Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev. 2013;32(3):188–217.

    Article  CAS  Google Scholar 

  • Schaaff TG, Cargile BJ, Stephenson JL, McLuckey SA. Ion trap collisional activation of the (M + 2H)2+–(M + 17H)17+Ions of human hemoglobin Β-Chain. Anal Chem. 2000;72(5):899–907.

    Article  CAS  Google Scholar 

  • Schulthess B, Bloemberg GV, Zbinden R, Bottger EC, Hombach M. Evaluation of the Bruker MALDI biotyper for identification of gram-positive rods: development of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol. 2014;52(4):1089–97.

    Article  CAS  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time‐of‐flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51.

    Article  CAS  Google Scholar 

  • Senko MW, Remes PM, Canterbury JD, Mathur R, Song Q, Eliuk SM, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Novel parallelized quadrupole/linear ion trap/orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem. 2013;85(24):11710–4.

    Article  CAS  Google Scholar 

  • Sparbier K, Lange C, Jung J, Wieser A, Schubert S, Kostrzewa M. MALDI biotyper-based rapid resistance detection by stable-isotope labeling. J Clin Microbiol. 2013;51(11):3741–8.

    Article  CAS  Google Scholar 

  • Stelzl U, Connell S, Nierhaus KH, Wittmann-Liebold B. Ribosomal proteins: role in ribosomal functions. eLS; John Wiley & Sons, Ltd., 2001. pp.1–3.

    Google Scholar 

  • Suarez S, Ferroni A, Lotz A, Jolley KA, Guerin P, Leto J, Dauphin B, Jamet A, Maiden MCJ, Nassif X, Armengaud J. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. J Microbiol Methods. 2013;94:390–6.

    Article  CAS  Google Scholar 

  • Suckau D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holle A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem. 2003;376(7):952–65.

    Article  CAS  Google Scholar 

  • Szájli E, Fehér T, Medzihradszky KF. Investigating the quantitative nature of MALDI-TOF MS. Mol Cell Proteomics. 2008;7(12):2410–18.

    Article  CAS  Google Scholar 

  • Tamura H, Hotta Y, Sato H. Novel accurate bacterial discrimination by MALDI-Time-of-Flight MS based on ribosomal proteins coding in S10-Spc-Alpha operon at strain level S10–GERMS. J Am Soc Mass Spectrom. 2013;24(8):1185–93.

    Article  CAS  Google Scholar 

  • Toh-Boyo GM, Wulff SS, Basile F. Comparison of sample preparation methods and evaluation of intra- and intersample reproducibility in bacteria MALDI-MS profiling. Anal Chem. 2012;84(22):9971–80.

    Article  CAS  Google Scholar 

  • Vargha M, Takáts Z, Konopka A, Nakatsu CH. Optimization of MALDI-TOF MS for strain level differentiation of arthrobacter isolates. J Microbiol Methods 2006;66(3):399–409.

    Article  CAS  Google Scholar 

  • Vranakis I, Goniotakis I, Psaroulaki A, Sandalakis V, Tselentis Y, Gevaert K; Tsiotis G. Proteome studies of bacterial antibiotic resistance mechanisms. J. Proteomics 2014;97:88–99.

    Article  CAS  Google Scholar 

  • Wang M, Shen Y, Turko IV, Nelson DC, Li S. Determining carbapenemase activity with 18O labeling and targeted mass spectrometry. Anal Chem Wash DC US. 2013;85:11014–11019.

    Article  CAS  Google Scholar 

  • Wang Z, Russon L, Li L, Roser DC, Long SR. Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1998;12(8):456–64.

    Article  CAS  Google Scholar 

  • Werner G, Fleige C, Fessler AT, Timke M, Kostrzewa M, Zischka M, Peters T, Kaspar H, Schwarz S. Improved identification including MALDI-TOF mass spectrometry analysis of Group D streptococci from bovine mastitis and subsequent molecular characterization of corresponding Enterococcus faecalis and Enterococcus faecium isolates. Vet Microbiol. 2012;160:162–9.

    Article  CAS  Google Scholar 

  • Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P. Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: a case study of acetic acid bacteria. Appl Environ Microbiol. 2014;80:1528–38, 12

    Article  CAS  Google Scholar 

  • Williams TL, Leopold P, Musser S. Automated postprocessing of electrospray LC/MS data for profiling protein expression in bacteria. Anal Chem. 2002;74(22):5807–13.

    Article  CAS  Google Scholar 

  • Williams TL, Monday SR, Edelson-Mammel S, Buchanan R, Musser SM. A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 2005;5(16):4161–9.

    Article  CAS  Google Scholar 

  • Wilm M. Principles of electrospray ionization. Mol Cell Proteomics 2011;10(7):M111.009407–M111.009407.

    Article  CAS  Google Scholar 

  • Wittmann HG. Components of bacterial ribosomes. Annu Rev Biochem. 1982;51(1):155–83.

    Article  CAS  Google Scholar 

  • Wybo I, Bel AD, Soetens O, Echahidi F, Vandoorslaer K, Cauwenbergh MV, Piérard D. Differentiation of cfiA-Negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(5):1961–4.

    Article  Google Scholar 

  • Yamashita M, Fenn JB. Electrospray ion source. Another variation on the free-jet theme. J Phys Chem. 1984; 88(20): 4451–9.

    Article  CAS  Google Scholar 

  • Yao Z-P, Afonso C, Fenselau C. Rapid microorganism identification with on-slide proteolytic digestion followed by matrix-assisted laser desorption/ionization tandem mass spectrometry and database searching. Rapid Commun Mass Spectrom. 2002a;16(20):1953–6.

    Google Scholar 

  • Yao Z-P, Demirev PA, Fenselau C. Mass spectrometry-based proteolytic mapping for rapid virus identification. Anal Chem. 2002b;74(11):2529–34.

    Article  CAS  Google Scholar 

  • Yergey AL, Coorssen JR, Backlund PS, Blank PS, Humphrey GA, Zimmerberg J, Campbell JM, Vestal ML. De novo sequencing of peptides using MALDI/TOF-TOF. J Am Soc Mass Spectrom. 2002;13(7):784–91.

    Article  CAS  Google Scholar 

  • Zeller-Peronnet V, Brockmann E, Pavlovic M, Timke M, Busch, U, Huber I. Potential and limitations of MALDI-TOF MS for discrimination within the species Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides. J Fuer Verbraucherschutz Leb. 2013;8:205–14.

    Article  CAS  Google Scholar 

  • Zenobi R, Knochenmuss R. Ion Formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17(5):337–66.

    Article  CAS  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013a;113(4):2343–94.

    Article  CAS  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013b;113(4):2343–94.

    Article  CAS  Google Scholar 

  • Zhou H, Ning Z, E. Starr A, Abu-Farha M, Figeys D. Advancements in top-down proteomics. Anal Chem. 2012;84(2):720–34.

    Article  CAS  Google Scholar 

  • Zhu B, Xiao D, Zhang H, Zhang Y, Gao Y, Xu L, Lv J, Wang Y, Zhang J, Shao Z. MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus. PLoS ONE. 2013;8:e56139.

    Article  CAS  Google Scholar 

  • Zubarev RA, Makarov A. Orbitrap mass spectrometry. Anal Chem. 2013;85(11):5288–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Basile PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basile, F., Mignon, R. (2016). Methods and Instrumentation in Mass Spectrometry for the Differentiation of Closely Related Microorganisms. In: Demirev, P., Sandrin, T. (eds) Applications of Mass Spectrometry in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-26070-9_2

Download citation

Publish with us

Policies and ethics