Skip to main content
Log in

Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

With the emergence and growing complexity of bacterial drug resistance, rapid and reliable susceptibility testing has become a topical issue. Therefore, new technologies that assist in predicting the effectiveness of empiric antibiotic therapy are of great interest. Although the use of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the rapid detection of antibiotic resistance is an attractive option, the current methods for MALDI-TOF MS susceptibility testing are restricted to very limited conditions. Here, we describe a technique that may allow for rapid susceptibility testing to an extent that is comparable to phenotypic methods. The test was based on a stable isotope labelling by amino acids in cell culture (SILAC)-like approach. This technique was used to visualise the growth of bacteria in the presence of an antibiotic. Pseudomonas aeruginosa was chosen as the model organism, and strains were incubated in normal medium, medium supplemented with 13C6-15 N2-labelled lysine and medium supplemented with labelled lysine and antibiotic. Peak shifts occurring due to the incorporation of the labelled amino acids were detected by MALDI-TOF MS. Three antibiotics with different mechanisms of action, meropenem, tobramycin and ciprofloxacin, were tested. A semi-automated algorithm was created to enable rapid and unbiased data evaluation. With the proposed test, a clear distinction between resistant and susceptible isolates was possible for all three antibiotics. The application of SILAC technology for the detection of antibiotic resistance may contribute to accelerated and reliable susceptibility testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hrabák J, Studentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerová T (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50(7):2441–2443. doi:10.1128/JCM.01002-12

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49(9):3222–3227. doi:10.1128/JCM.00984-11

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol 50(3):927–937. doi:10.1128/JCM.05737-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Burckhardt I, Zimmermann S (2011) Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49(9):3321–3324. doi:10.1128/JCM.00287-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Treviño M, Areses P, Peñalver MD, Cortizo S, Pardo F, del Molino ML, García-Riestra C, Hernández M, Llovo J, Regueiro BJ (2012) Susceptibility trends of Bacteroides fragilis group and characterisation of carbapenemase-producing strains by automated REP-PCR and MALDI TOF. Anaerobe 18(1):37–43. doi:10.1016/j.anaerobe.2011.12.022

    Article  PubMed  Google Scholar 

  6. Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M (2011) Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 60(Pt 11):1584–1590. doi:10.1099/jmm.0.031336-0

    Article  CAS  PubMed  Google Scholar 

  7. Wybo I, De Bel A, Soetens O, Echahidi F, Vandoorslaer K, Van Cauwenbergh M, Piérard D (2011) Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49(5):1961–1964. doi:10.1128/JCM.02321-10

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wolters M, Rohde H, Maier T, Belmar-Campos C, Franke G, Scherpe S, Aepfelbacher M, Christner M (2011) MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages. Int J Med Microbiol 301(1):64–68. doi:10.1016/j.ijmm.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  9. Jackson KA, Edwards-Jones V, Sutton CW, Fox AJ (2005) Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus. J Microbiol Methods 62(3):273–284. doi:10.1016/j.mimet.2005.04.015

    Article  CAS  PubMed  Google Scholar 

  10. Majcherczyk PA, McKenna T, Moreillon P, Vaudaux P (2006) The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 255(2):233–239. doi:10.1111/j.1574-6968.2005.00060.x

    Article  CAS  PubMed  Google Scholar 

  11. Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28(17):2270–2271. doi:10.1093/bioinformatics/bts447

    Article  CAS  PubMed  Google Scholar 

  12. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  13. Sparbier K, Lange C, Jung J, Wieser A, Schubert S, Kostrzewa M (2013) MALDI Biotyper-based rapid resistance detection by stable-isotope labeling. J Clin Microbiol 51(11):3741–3748. doi:10.1128/JCM.01536-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fazius F, Zaehle C, Brock M (2013) Lysine biosynthesis in microbes: relevance as drug target and prospects for beta-lactam antibiotics production. Appl Microbiol Biotechnol 97(9):3763–3772. doi:10.1007/s00253-013-4805-1

    Article  CAS  PubMed  Google Scholar 

  15. Demirev PA, Hagan NS, Antoine MD, Lin JS, Feldman AB (2013) Establishing drug resistance in microorganisms by mass spectrometry. J Am Soc Mass Spectrom 24(8):1194–201. doi:10.1007/s13361-013-0609-x

    Article  CAS  PubMed  Google Scholar 

  16. Suh MJ, Hamburg DM, Gregory ST, Dahlberg AE, Limbach PA (2005) Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 5(18):4818–4831. doi:10.1002/pmic.200402111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. van Belkum A, Dunne WM Jr (2013) Next-generation antimicrobial susceptibility testing. J Clin Microbiol 51(7):2018–2024. doi:10.1128/JCM.00313-13

    Article  PubMed Central  PubMed  Google Scholar 

  18. Albalat A, Stalmach A, Bitsika V, Siwy J, Schanstra JP, Petropoulos AD, Vlahou A, Jankowski J, Persson F, Rossing P, Jaskolla TW, Mischak H, Husi H (2013) Improving peptide relative quantification in MALDI-TOF MS for biomarker assessment. Proteomics 13(20):2967–2975. doi:10.1002/pmic.201300100

    CAS  PubMed  Google Scholar 

  19. Szájli E, Fehér T, Medzihradszky KF (2008) Investigating the quantitative nature of MALDI-TOF MS. Mol Cell Proteomics 7(12):2410–2418. doi:10.1074/mcp.M800108-MCP200

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Bayerische Forschungsstiftung (Forschungsverbund “ForBIMed—Biomarker in der Infektionsmedizin”) to S.S. and M.K.

Conflict of interest

Katrin Sparbier, Christoph Lange and Markus Kostrzewa are employed at the mass spectrometry company Bruker Daltonik GmbH. The other authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Jung.

Additional information

Sören Schubert and Andreas Wieser share the last authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

P. aeruginosa ATCC 27853 and one P. aeruginosa clinical isolate from a broth culture at different growth phases were inoculated into DMEM medium containing labelled lysine and non-labelled lysine. Incorporation of the labelled amino acids in the lag phase (90 min), early growth phase (180 min), exponential growth phase (300 min) and stationary phase (660 min) was measured in triplicate. Ratios of the intensities of labelled to non-labelled peaks are displayed in a box plot diagram. No obvious correlation between the growth phase and the incorporation of the labelled amino acid was detected. (GIF 14 kb)

High-resolution image (EPS 3645 kb)

Fig S2

Susceptibility testing was performed with ciprofloxacin and four representative strains of P. aeruginosa (two susceptible and two resistant). The isolates were grown on Columbia blood and MacConkey agar. To allow for comparison with the normal inter-assay variability, the results of two different days are displayed. No differences related to the medium of the starter culture were observed. (GIF 16 kb)

High-resolution image (EPS 3654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.S., Eberl, T., Sparbier, K. et al. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur J Clin Microbiol Infect Dis 33, 949–955 (2014). https://doi.org/10.1007/s10096-013-2031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-2031-5

Keywords

Navigation