Skip to main content

Diagnostic Applications of Nuclear Medicine: Brain Tumors

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

PET/CT and PET/MR can be used with various radiopharmaceuticals to assess the mechanisms underlying biochemical changes and pathophysiologic changes of brain tumors.

Amino acid tracers are frequently used for most clinical issues. These tracers include, among others, [11C]methionine ([11C]MET), l-3,4-dihydroxyphenylalanine ([18F]fluorodopa), and O-(2-18F-fluoroethyl)-l-tyrosine. Amino acid tracers are particularly accurate to distinguish between tumor recurrence and radiation necrosis, which represents the single most common question in the clinical management of brain tumor patients. The role of [18F]FDG, the earliest PET tracer used for diagnosis and monitoring of brain tumors, is today much reduced after the introduction of amino acid tracers. However, for in vivo prediction of tumor grading, which represents a very important prognostic factor, [18F]FDG still remains more accurate than most amino acid tracers.

It has been shown with different tracers that higher baseline values of tracer uptake as well as lower percent changes after therapy in treated patients predict shorter survival.

PET/CT and PET/MR can be used also after surgery to assess the presence of residual tumor. Currently, PET, in combination with MR, is increasingly used for the definition of the tumor volume that has to be irradiated. Identification of the part of the tumor that displays highest metabolic activity can also be used to direct stereotaxic biopsy.

Other tracers have been developed to explore different biochemical processes, for example, hypoxia (e.g., 18F-fluoromisonidazole), DNA synthesis (3-deoxy-3-18F-fluorothymidine), and membrane proliferation (radiolabeled choline). However, at the moment all these tracers have a less established role in the clinical practice, even though some interesting results are emerging from clinical studies.

The hybrid PET/MR scanners developed over the last decade are still mainly restricted to selected university or research centers, although their availability is increasing. They represent a technological breakthrough with immediate impact on research as well as on diagnostic capabilities. The patient, for example, can perform simultaneously (“one-stop-shop”) an examination that provides information that would otherwise require two different examinations performed often in two different institutes and in different days. Several studies have shown indeed that the combination of the two modalities provides a synergistic effect. In the research setting, PET/MR scanners are of particular value since they allow accurate registration and anatomic fusion, as well segmentation and partial volume correction. The widespread use of PET/MR scanners is limited by high costs, sufficient research funds availability, high clinical demand, and highly qualified interdisciplinary personnel, but further growth is expected in the near future.

The most promising perspective for future investigations is probably represented by the development of software enabling radiomics analysis of brain tumors. Radiomics extracts large amounts of features from either PET or MR images using data characterization algorithms. These features, termed radiomic features, have the potential to uncover disease characteristics that fail to be appreciated by visual or semiquantitative analysis. The hypothesis of radiomics is that the distinctive imaging features between disease forms may be useful for predicting prognosis and therapeutic response for various conditions, thus providing valuable information for personalized therapy. Radiomics has already been successfully employed in pilot studies in brain tumor patients with either [11C]MET or [18F]FDG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient, a parameter of MR imaging

AJCC:

American Joint Committee on Cancer

BBB:

Blood–brain barrier

BTV:

Biological tumor volume (the extent of tumor based on PET imaging); the combination of GTV and BTV provides the planning target volume for radiation therapy

CBF:

Cerebral blood flow

CI:

Confidence interval

CMRglc:

Cerebral metabolic rate for glucose

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CT:

X-ray computed tomography

64Cu-ATSM:

64Cu-diacetyl-bis(N4-methylsemicarbazone)

DG:

2-Deoxyglucose

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTANOC:

DOTA-1-Nal3-octreotide

DOTATATE:

DOTA- Tyr3-octreotate

DOTATOC:

DOTA-octreotate

DWI:

Diffusion-weighted imaging, an MR imaging technique

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signaling

18F-FAZA:

18F-azomycin arabinoside

18F-FES:

16α-18F-fluoro-17β-oestradiol

18F-FET:

O-(2-18F-Fluoroethyl)-l-Tyrosine, a tyrosine analog

18F-FLT:

18F-fluorothymidine

18F-FMAU:

18F-2-fluoro-5-methyl-1-beta-d-arabinofuranosyluracil

18F-MISO:

18F-fluoromisonidazole

[18F]FDOPA:

l-3,4-dihydroxy-6-[18F]fluorophenylalanine

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

FLAIR:

Fluid-attenuated inversion recovery, an MR imaging technique

GBM:

Glioblastoma multiforme

GTV:

Gross tumor volume (the extent of the tumor on morphologic imaging)

[123I]IAZA:

[123I]iodoazomycin arabinoside

IDH:

Isocitrate dehydrogenase; mutations of this enzyme occur more frequently in oligodendroglial and astrocytic tumors

123I-IMT:

[123I]alpha-methyltyrosine, a tyrosine analog transported as l-tyrosine by the neutral amino acid transporter

KPS:

Karnofsky performance score

LAT1:

l-type amino acid transporter 1

M:

Metastasis status according to the AJCC/UICC TNM staging system

MDR1:

Multidrug resistance gene 1, a characteristic associated with aggressive tumors; this gene encodes for P-glyoprotein

[11C]MET:

[11C]methionine

MGMT:

Methyl guanine DNA methyl transferase, a DNA repair enzyme; methylation of MGMT promoter is associated with increased overall survival

MIB-1:

Marker of cell proliferation used for stratification of grades of brain tumors

MoAb:

Monoclonal antibody

MPNST:

Malignant peripheral nerve sheath tumor

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/Computed tomography

PET/MR:

Positron emission tomography/Magnetic resonance

PI3K:

Phosphatidylinositol 3-kinase

PNET:

Primitive neuroectodermic tumor

pRIT:

Pretargeting radioimmunotherapy

PTEN:

Phosphatase and tensin homolog is a tumor suppressor; PTEN deletions indicate a poor prognosis

RIT:

Radioimmunotherapy

ROC:

Receiver operating characteristic, a statistical analysis to assess the performance of a binary classifier

ROI:

Region of interest

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/Computed tomography

SST:

Somatostatin

SSTR:

Somatostatin receptors

SUV:

Standardized uptake value

T:

Tumor status according to the AJCC/UICC TNM staging system

T/N:

Ratio of tumor uptake to normal brain uptake

TBR:

Tumor-to-background ratio

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TP53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

VEGF:

Vascular endothelial growth factor

VOI:

Volume of interest

WHO:

World Health Organization

References

  1. Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of brain tumors. Neurol Clin. 2018;36:395–419.

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  3. Komori T. The 2016 WHO classification of tumours of the Central Nervous System: the major points of revision. Neurol Med Chir (Tokyo). 2017;57:301–11.

    Article  Google Scholar 

  4. Bailey P, Cushing H. A classification of tumors of the glioma group on a histological basis with a correlated study of prognosis. Philadelphia: JB Lippincott; 1926.

    Google Scholar 

  5. Herholz K. Brain tumors: an update on clinical PET research in gliomas. Semin Nucl Med. 2017;47:5–17.

    Article  PubMed  Google Scholar 

  6. McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 2003;98:1745–8.

    Article  PubMed  Google Scholar 

  7. Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med. 2015;3:95.

    PubMed  PubMed Central  Google Scholar 

  8. Kraus JA, Lamszus K, Glesmann N, Beck M, Wolter M, Sabel M, et al. Molecular genetic alterations in glioblastomas with oligodendroglial component. Acta Neuropathol. 2001;101:311–20.

    Article  CAS  PubMed  Google Scholar 

  9. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res. 2009;65:188–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol. 1994;145:1175–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol. 2013;14:e370–9.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.

    Article  CAS  PubMed  Google Scholar 

  16. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017;18:e315–e29.

    Article  PubMed  Google Scholar 

  17. Mabray MC, Barajas Jr RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat. 2015;3:8–23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Srividya MR, Thota B, Shailaja BC, Arivazhagan A, Thennarasu K, Chandramouli BA, et al. Homozygous 10q23/PTEN deletion and its impact on outcome in glioblastoma: a prospective translational study on a uniformly treated cohort of adult patients. Neuropathology. 2011;31:376–83.

    Article  PubMed  Google Scholar 

  19. Delev D, Heiland DH, Franco P, Reinacher P, Mader I, Staszewski O, et al. Surgical management of lower-grade glioma in the spotlight of the 2016 WHO classification system. J Neuro-Oncol. 2019;141:223–33.

    Article  CAS  Google Scholar 

  20. Sneed PK, Prados MD, McDermott MW, Larson DA, Malec MK, Lamborn KR, et al. Large effect of age on the survival of patients with glioblastoma treated with radiotherapy and brachytherapy boost. Neurosurgery. 1995;36:898–903; discussion -4.

    Article  CAS  PubMed  Google Scholar 

  21. Saconn PA, Shaw EG, Chan MD, Squire SE, Johnson AJ, McMullen KP, et al. Use of 3.0-T MRI for stereotactic radiosurgery planning for treatment of brain metastases: a single-institution retrospective review. Int J Radiat Oncol Biol Phys. 2010;78:1142–6.

    Article  PubMed  Google Scholar 

  22. Abd-Ellah MK, Awad AI, Khalaf AAM, Hamed HFA. A review on brain tumor diagnosis from MRI images: practical implications, key achievements, and lessons learned. Magn Reson Imaging. 2019;61:300–18.

    Article  PubMed  Google Scholar 

  23. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–72.

    Article  PubMed  Google Scholar 

  24. Hilario A, Sepulveda JM, Perez-Nunez A, Salvador E, Millan JM, Hernandez-Lain A, et al. A prognostic model based on preoperative MRI predicts overall survival in patients with diffuse gliomas. AJNR Am J Neuroradiol. 2014;35:1096–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marner L, Henriksen OM, Lundemann M, Larsen VA, Law I. Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging. 2017;5:135–49.

    Article  PubMed  Google Scholar 

  26. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  CAS  PubMed  Google Scholar 

  27. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Nagren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.

    Article  PubMed  Google Scholar 

  28. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32:1323–9.

    Article  PubMed  Google Scholar 

  29. Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, et al. Optimal cutoff levels of [18F]fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology. 1995;195:47–52.

    Article  CAS  PubMed  Google Scholar 

  30. Patronas NJ, Di Chiro G, Smith BH, De La Paz R, Brooks RA, Milam HL, et al. Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Res. 1984;291:93–101.

    Article  CAS  PubMed  Google Scholar 

  31. Henze M, Mohammed A, Schlemmer H, Herfarth KK, Mier W, Eisenhut M, et al. Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-alpha-methyl- l-tyrosine and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging. 2002;29:1455–61.

    Article  PubMed  Google Scholar 

  32. Rozental JM, Levine RL, Nickles RJ. Changes in glucose uptake by malignant gliomas: preliminary study of prognostic significance. J Neuro-Oncol. 1991;10:75–83.

    Article  CAS  Google Scholar 

  33. Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg. 2006;104:238–53.

    Article  PubMed  Google Scholar 

  34. Tralins KS, Douglas JG, Stelzer KJ, Mankoff DA, Silbergeld DL, Rostomily RC, et al. Volumetric analysis of [18F]FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med. 2002;43:1667–73.

    PubMed  Google Scholar 

  35. Douglas JG, Stelzer KJ, Mankoff DA, Tralins KS, Krohn KA, Muzi M, et al. [F-18]fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys. 2006;64:886–91.

    Article  CAS  PubMed  Google Scholar 

  36. Segtnan EA, Hess S, Grupe P, Hoilund-Carlsen PF. [18F]fluorodeoxyglucose PET/computed tomography for primary brain tumors. PET Clin. 2015;10:59–73.

    Article  PubMed  Google Scholar 

  37. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. [11C]l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1–18.

    Article  PubMed  Google Scholar 

  38. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36:484–92.

    CAS  PubMed  Google Scholar 

  39. Utriainen M, Komu M, Vuorinen V, Lehikoinen P, Sonninen P, Kurki T, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neuro-Oncol. 2003;62:329–38.

    Article  CAS  Google Scholar 

  40. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95:746–50.

    Article  PubMed  Google Scholar 

  41. Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, et al. [11C]methionine PET as a prognostic marker in patients with glioma: comparison with [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2005;32:52–9.

    Article  CAS  PubMed  Google Scholar 

  42. Pirotte B, Goldman S, Van Bogaert P, David P, Wikler D, Rorive S, et al. Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery. 2005;57:128–39; discussion -39.

    PubMed  Google Scholar 

  43. Pirotte B, Levivier M, Morelli D, Van Bogaert P, Detemmerman D, David P, et al. Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst. 2005;21:294–300.

    Article  PubMed  Google Scholar 

  44. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64:471–81; discussion 81.

    Article  PubMed  Google Scholar 

  45. Grosu AL, Lachner R, Wiedenmann N, Stark S, Thamm R, Kneschaurek P, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and [11C]methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys. 2003;56:1450–63.

    Article  PubMed  Google Scholar 

  46. Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of l-methyl-[11C]methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg. 2005;103:498–507.

    Article  PubMed  Google Scholar 

  47. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of [11C]methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49:694–9.

    Article  PubMed  Google Scholar 

  48. Biersack HJ, Coenen HH, Stocklin G, Reichmann K, Bockisch A, Oehr P, et al. Imaging of brain tumors with l-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nucl Med. 1989;30:110–2.

    CAS  PubMed  Google Scholar 

  49. Langen KJ, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, et al. SPECT studies of brain tumors with l-3-[11C]iodo-alpha-methyl tyrosine: comparison with PET, [124I]IMT and first clinical results. J Nucl Med. 1990;31:281–6.

    CAS  PubMed  Google Scholar 

  50. Kuwert T, Morgenroth C, Woesler B, Matheja P, Palkovic S, Vollet B, et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med. 1996;23:1345–53.

    Article  CAS  PubMed  Google Scholar 

  51. Weber W, Bartenstein P, Gross MW, Kinzel D, Daschner H, Feldmann HJ, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38:802–8.

    CAS  PubMed  Google Scholar 

  52. Weber WA, Dick S, Reidl G, Dzewas B, Busch R, Feldmann HJ, et al. Correlation between postoperative 3-[123I]iodo-l-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med. 2001;42:1144–50.

    CAS  PubMed  Google Scholar 

  53. Pauleit D, Floeth F, Tellmann L, Hamacher K, Hautzel H, Muller HW, et al. Comparison of O-(2-[18F]fluoroethyl)-l-tyrosine PET and 3-[123I]iodo-alpha-methyl-l-tyrosine SPECT in brain tumors. J Nucl Med. 2004;45:374–81.

    CAS  PubMed  Google Scholar 

  54. Dunet V, Prior JO. FET PET in neuro-oncology and in evaluation of treatment response. PET Clin. 2013;8:147–62.

    Article  PubMed  Google Scholar 

  55. Pauleit D, Floeth F, Herzog H, Hamacher K, Tellmann L, Muller HW, et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-l-tyrosine. Eur J Nucl Med Mol Imaging. 2003;30:519–24.

    Article  CAS  PubMed  Google Scholar 

  56. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, et al. O-(2-[18F]fluoroethyl)-l-tyrosine and l-(methyl-[11C])methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27:542–9.

    Google Scholar 

  57. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-l-tyrosine in vitro and in vivo. J Nucl Med. 1999;40:1367–73.

    CAS  PubMed  Google Scholar 

  58. Langen KJ, Jarosch M, Muhlensiepen H, Hamacher K, Broer S, Jansen P, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol. 2003;30:501–8.

    Article  CAS  PubMed  Google Scholar 

  59. Mauler J, Maudsley AA, Langen KJ, Nikoubashman O, Stoffels G, Sheriff S, et al. Spatial relationship of glioma volume derived from [18F]FET PET and volumetric MR spectroscopy imaging: a hybrid PET/MRI study. J Nucl Med. 2018;59:603–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vander Borght T, Asenbaum S, Bartenstein P, Halldin C, Kapucu O, Van Laere K, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33:1374–80.

    Article  CAS  PubMed  Google Scholar 

  61. Lau EW, Drummond KJ, Ware RE, Drummond E, Hogg A, Ryan G, et al. Comparative PET study using [18F]FET and [18F]FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci. 2010;17:43–9.

    Article  PubMed  Google Scholar 

  62. Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H, et al. Comparison of [18F]FET and [18F]FDG PET in brain tumors. Nucl Med Biol. 2009;36:779–87.

    Article  CAS  PubMed  Google Scholar 

  63. Jeong SY, Lim SM. Comparison of 3′-deoxy-3′-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-l-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol. 2012;39:977–81.

    Article  CAS  PubMed  Google Scholar 

  64. Roelcke U, Bruehlmeier M, Hefti M, Hundsberger T, Nitzsche EU. 18F-choline PET does not detect increased metabolism in [18F]fluoroethyltyrosine-negative low-grade gliomas. Clin Nucl Med. 2012;37:e1–3.

    Google Scholar 

  65. Dunet V, Rossier C, Buck A, Stupp R, Prior JO. Performance of [18F]fluoro-ethyl-tyrosine ([18F]FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med. 2012;53:207–14.

    Article  CAS  PubMed  Google Scholar 

  66. Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, et al. Dynamic O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med. 2011;36:841–7.

    Article  PubMed  Google Scholar 

  67. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39:1021–9.

    Article  CAS  PubMed  Google Scholar 

  68. Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30:1561–7.

    Article  CAS  PubMed  Google Scholar 

  69. Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. [18F]FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with [18F]FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:1025–35.

    Article  CAS  PubMed  Google Scholar 

  70. Talbot JN, Kerrou K, Montravers F, Nataf V, Chevalme Y. FDOPA PET has clinical utility in brain tumour imaging: a proposal for a revision of the recent EANM guidelines. Eur J Nucl Med Mol Imaging. 2007;34:1131–2; author reply 3–4.

    Article  PubMed  Google Scholar 

  71. Tripathi M, Sharma R, D’Souza M, Jaimini A, Panwar P, Varshney R, et al. Comparative evaluation of [18F]FDOPA, [18F]FDG, and [18F]FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34:878–83.

    Article  PubMed  Google Scholar 

  72. Humbert O, Bourg V, Mondot L, Gal J, Bondiau PY, Fontaine D, et al. [18F]FDOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging. 2019;46:558–68.

    Article  PubMed  Google Scholar 

  73. Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, et al. Advanced MR imaging and [18F]FDOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging. 2019;46:1685–94.

    Article  CAS  PubMed  Google Scholar 

  74. Shields AF, Coonrod DV, Quackenbush RC, Crowley JJ. Cellular sources of thymidine nucleotides: studies for PET. J Nucl Med. 1987;28:1435–40.

    CAS  PubMed  Google Scholar 

  75. Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA. Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med. 1998;39:1043–55.

    CAS  PubMed  Google Scholar 

  76. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[18F]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31:829–37.

    Article  CAS  PubMed  Google Scholar 

  77. Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, et al. Kinetic analysis of 3′-deoxy-3'-18F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47:1612–21.

    CAS  PubMed  Google Scholar 

  78. Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K, et al. Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-l-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res. 2008;14:2049–55.

    Article  CAS  PubMed  Google Scholar 

  79. Lodge MA, Holdhoff M, Leal JP, Bag AK, Nabors LB, Mintz A, et al. Repeatability of [18F]FLT PET in a multicenter study of patients with high-grade glioma. J Nucl Med. 2017;58:393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F]fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25:4714–21.

    Article  CAS  PubMed  Google Scholar 

  81. Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, et al. [11C]methionine (MET) and [18F]fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35:2009–17.

    Article  CAS  PubMed  Google Scholar 

  82. Giovannini E, Lazzeri P, Milano A, Gaeta MC, Ciarmiello A. Clinical applications of choline PET/CT in brain tumors. Curr Pharm Des. 2015;21:121–7.

    Article  CAS  PubMed  Google Scholar 

  83. Huang Z, Zuo C, Guan Y, Zhang Z, Liu P, Xue F, et al. Misdiagnoses of [11C]choline combined with [18F]FDG PET imaging in brain tumours. Nucl Med Commun. 2008;29:354–8.

    Article  CAS  PubMed  Google Scholar 

  84. Giovacchini G, Fallanca F, Landoni C, Gianolli L, Picozzi P, Attuati L, et al. [11C]choline versus [18F]fluorodeoxyglucose for imaging meningiomas: an initial experience. Clin Nucl Med. 2009;34:7–10.

    Article  PubMed  Google Scholar 

  85. Hara T, Kondo T, Kosaka N. Use of 18F-choline and [11C]choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003;99:474–9.

    Article  PubMed  Google Scholar 

  86. Li FM, Nie Q, Wang RM, Chang SM, Zhao WR, Zhu Q, et al. [11C]CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Nucl Med Biol. 2012;39:437–42.

    Article  CAS  PubMed  Google Scholar 

  87. Ohtani T, Kurihara H, Ishiuchi S, Saito N, Oriuchi N, Inoue T, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med. 2001;28:1664–70.

    Article  CAS  PubMed  Google Scholar 

  88. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using [11C]methionine, [18F]fluorodeoxyglucose, and [11C]choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29:1176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li W, Ma L, Wang X, Sun J, Wang S, Hu X. 11C-choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumour Biol. 2014;35:12353–60.

    Google Scholar 

  90. Tan H, Chen L, Guan Y, Lin X. Comparison of MRI, [18F]FDG, and [11C]choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med. 2011;36:978–81.

    Article  PubMed  Google Scholar 

  91. Markus R, Donnan GA, Kazui S, Read S, Hirano T, Scott AM, et al. Statistical parametric mapping of hypoxic tissue identified by [18F]fluoromisonidazole and positron emission tomography following acute ischemic stroke. NeuroImage. 2002;16:425–33.

    Article  CAS  PubMed  Google Scholar 

  92. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33:2133–7.

    CAS  PubMed  Google Scholar 

  93. Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med. 1987;28:68–75.

    CAS  PubMed  Google Scholar 

  94. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with [18F]fluoromisonidazole and [15O]H2O. J Nucl Med. 2004;45:1851–9.

    PubMed  Google Scholar 

  95. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and [18F]fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med. 2009;50:36–44.

    Article  PubMed  Google Scholar 

  96. Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. [18F]Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39:760–70.

    Article  CAS  PubMed  Google Scholar 

  97. Werner P, Barthel H, Drzezga A, Sabri O. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42:512–26.

    Article  CAS  PubMed  Google Scholar 

  98. Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53:1916–25.

    Article  PubMed  Google Scholar 

  99. Ferda J, Ferdova E, Hes O, Mracek J, Kreuzberg B, Baxa J. PET/MRI: multiparametric imaging of brain tumors. Eur J Radiol. 2017;94:A14–25.

    Article  PubMed  Google Scholar 

  100. Charnley N, West CM, Barnett CM, Brock C, Bydder GM, Glaser M, et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66:331–8.

    Article  CAS  PubMed  Google Scholar 

  101. Calabria FF, Barbarisi M, Gangemi V, Grillea G, Cascini GL. Molecular imaging of brain tumors with radiolabeled choline PET. Neurosurg Rev. 2018;41:67–76.

    Article  PubMed  Google Scholar 

  102. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med. 2010;51:1198–205.

    Article  PubMed  Google Scholar 

  103. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Investig Radiol. 2013;48:295–301.

    Article  CAS  Google Scholar 

  104. Preuss M, Werner P, Barthel H, Nestler U, Christiansen H, Hirsch FW, et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst. 2014;30:1399–403.

    Article  PubMed  Google Scholar 

  105. Garibotto V, Heinzer S, Vulliemoz S, Guignard R, Wissmeyer M, Seeck M, et al. Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med. 2013;38:e13–8.

    Article  PubMed  Google Scholar 

  106. Dunet V, Maeder P, Nicod-Lalonde M, Lhermitte B, Pollo C, Bloch J, et al. Combination of MRI and dynamic FET PET for initial glioma grading. Nuklearmedizin. 2014;53:155–61.

    Article  CAS  PubMed  Google Scholar 

  107. Song S, Cheng Y, Ma J, Wang L, Dong C, Wei Y, et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur J Nucl Med Mol Imaging. 2020;47:1458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Verger A, Filss CP, Lohmann P, Stoffels G, Sabel M, Wittsack HJ, et al. Comparison of [18F]FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging. 2017;44:2257–65.

    Article  CAS  PubMed  Google Scholar 

  109. Lustig RA, Seiferheld W, Berkey B, Yung AW, Scarantino C, Movsas B, et al. Imaging response in malignant glioma, RTOG 90-06. Am J Clin Oncol. 2007;30:32–7.

    Article  PubMed  Google Scholar 

  110. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62:816–22.

    Article  CAS  PubMed  Google Scholar 

  111. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer. 1988;62:1074–8.

    Article  CAS  PubMed  Google Scholar 

  112. Santra A, Kumar R, Sharma P, Bal C, Julka PK, Malhotra A. F-18 FDG PET-CT for predicting survival in patients with recurrent glioma: a prospective study. Neuroradiology. 2011;53:1017–24.

    Article  PubMed  Google Scholar 

  113. Colavolpe C, Chinot O, Metellus P, Mancini J, Barrie M, Bequet-Boucard C, et al. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevacizumab and irinotecan. Neuro-Oncology. 2012;14:649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Colavolpe C, Metellus P, Mancini J, Barrie M, Bequet-Boucard C, Figarella-Branger D, et al. Independent prognostic value of pre-treatment [18F]FDG-PET in high-grade gliomas. J Neuro-Oncol. 2012;107:527–35.

    Article  Google Scholar 

  115. Brock CS, Young H, O'Reilly SM, Matthews J, Osman S, Evans H, et al. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer. 2000;82:608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hillner BE, Siegel BA, Shields AF, Duan F, Gareen IF, Hanna L, et al. Impact of dedicated brain PET on intended patient management in participants of the national oncologic PET Registry. Mol Imaging Biol. 2011;13:161–5.

    Article  PubMed  Google Scholar 

  117. Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ, et al. Prognostic value of O-(2-[18F]fluoroethyl)-l-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007;48:519–27.

    Article  CAS  PubMed  Google Scholar 

  118. Piroth MD, Holy R, Pinkawa M, Stoffels G, Kaiser HJ, Galldiks N, et al. Prognostic impact of postoperative, pre-irradiation [18F]fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol. 2011;99:218–24.

    Article  CAS  PubMed  Google Scholar 

  119. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. O-(2-[18F]fluoroethyl)-l-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52:856–64.

    Google Scholar 

  120. Galldiks N, Langen KJ, Holy R, Pinkawa M, Stoffels G, Nolte KW, et al. Assessment of treatment response in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET in comparison to MRI. J Nucl Med. 2012;53:1048–57.

    Article  CAS  PubMed  Google Scholar 

  121. Harris RJ, Cloughesy TF, Pope WB, Nghiemphu PL, Lai A, Zaw T, et al. [18F]DOPA and [18F]FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012;14:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using [18F]FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014;20:3550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kertels O, Kessler AF, Mihovilovic MI, Stolzenburg A, Linsenmann T, Samnick S, et al. Prognostic value of O-(2-[18F]fluoroethyl)-l-tyrosine PET/CT in newly diagnosed WHO 2016 grade II and III glioma. Mol Imaging Biol. 2019;21:1174–81.

    Article  CAS  PubMed  Google Scholar 

  124. Takei H, Shinoda J, Ikuta S, Maruyama T, Muragaki Y, Kawasaki T, et al. Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. J Neurosurg. 2019;133:1010–9.

    Article  Google Scholar 

  125. Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, et al. Static and dynamic [18F]FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45:443–51.

    Article  CAS  PubMed  Google Scholar 

  126. Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, et al. Identification of time-to-peak on dynamic [18F]FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro-Oncology. 2018;20:279–88.

    Article  CAS  PubMed  Google Scholar 

  127. Rohrich M, Huang K, Schrimpf D, Albert NL, Hielscher T, von Deimling A, et al. Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas. Eur J Nucl Med Mol Imaging. 2018;45:1573–84.

    Article  PubMed  Google Scholar 

  128. Treglia G, Muoio B, Trevisi G, Mattoli MV, Albano D, Bertagna F, et al. Diagnostic performance and prognostic value of PET/CT with different tracers for brain tumors: a systematic review of published meta-analyses. Int J Mol Sci. 2019;20:1–16.

    Article  CAS  Google Scholar 

  129. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.

    Article  PubMed  Google Scholar 

  130. Visvikis D, Hatt M, Tixier F, Cheze Le Rest C. The age of reason for FDG PET image-derived indices. Eur J Nucl Med Mol Imaging. 2012;39:1670–2.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

    Article  PubMed  Google Scholar 

  132. Kong Z, Li J, Liu Z, Zhao D, Cheng X, Li L, et al. Radiomics signature based on FDG-PET predicts proliferative activity in primary glioma. Clin Radiol. 2019;74:815.e15–23.

    Article  CAS  Google Scholar 

  133. Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y, et al. Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol. 2018;28:3640–50.

    Article  PubMed  Google Scholar 

  134. Liu Z, Wang Y, Liu X, Du Y, Tang Z, Wang K, et al. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. Neuroimage Clin. 2018;19:271–8.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wei J, Yang G, Hao X, Gu D, Tan Y, Wang X, et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. Eur Radiol. 2019;29:877–88.

    Article  PubMed  Google Scholar 

  136. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96:191–7.

    Article  CAS  PubMed  Google Scholar 

  137. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34:944–50, S1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32:653–9.

    Article  PubMed  Google Scholar 

  139. Fallanca F, Giovacchini G, Picchio M, Bettinardi V, Messa C, Fazio F. Incidental detection by [11C]choline PET/CT of meningiomas in prostate cancer patients. Q J Nucl Med Mol Imaging. 2009;53:417–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciarmiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Giovacchini, G., Pastorino, S., Riondato, M., Giovannini, E., Ciarmiello, A. (2022). Diagnostic Applications of Nuclear Medicine: Brain Tumors. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_9-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_9-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Brain Tumors
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_9-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Brain Tumors
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_9-1