Skip to main content

Advertisement

Log in

Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate MRI-derived diffusion weighted imaging (DWI), 1H-MR spectroscopy (1H-MRS) and arterial spin labeling (ASL) perfusion imaging in comparison with 18F-dihydroxyphenylalanine (DOPA) PET with respect to diagnostic evaluation of pediatric diffuse midline gliomas (DMG) H3K27M-mutant and wild-type.

Methods

We retrospectively analyzed 22 pediatric patients with DMG histologically proved and molecularly classified as H3K27M-mutant (12 subjects) and wild-type (10 subjects) who underwent DWI, 1H-MRS, and ASL performed within 2 weeks of 18F-DOPA PET. DWI-derived relative minimum apparent diffusion coefficient (rADC min), 1H-MRS data [choline/N-acetylaspartate (Cho/NAA), choline/creatine (Cho/Cr), and presence of lactate] and relative ASL-derived cerebral blood flow max (rCBF max) were compared with 18F-DOPA uptake Tumor/Normal tissue (T/N) and Tumor/Striatum (T/S) ratios, and correlated with histological and molecular features of DMG. Statistics included Pearson’s chi-square and Mann-Whitney U tests, Spearman’s rank correlation and receiver operating characteristic (ROC) analysis.

Results

The highest degrees of correlation among different techniques were found between T/S, rADC min and Cho/NAA ratio (p < 0.01), and between rCBF max and rADC min (p < 0.01). Significant differences between histologically classified low- and high-grade DMG, independently of H3K27M-mutation, were found among all imaging techniques (p ≤ 0.02). Significant differences in terms of rCBF max, rADC min, Cho/NAA and 18F-DOPA uptake were also found between molecularly classified mutant and wild-type DMG (p ≤ 0.02), even though wild-type DMG included low-grade astrocytomas, not present among mutant DMG. When comparing only histologically defined high-grade mutant and wild-type DMG, only the 18F-DOPA PET data T/S demonstrated statistically significant differences independently of histology (p < 0.003). ROC analysis demonstrated that T/S ratio was the best parameter for differentiating mutant from wild-type DMG (AUC 0.94, p < 0.001).

Conclusions

Advanced MRI and 18F-DOPA PET characteristics of DMG depend on histological features; however, 18F-DOPA PET-T/S was the only parameter able to discriminate H3K27M-mutant from wild-type DMG independently of histology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  2. Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol. 2018;135:639–42.

    Article  PubMed  Google Scholar 

  3. Aboian MS, Solomon DA, Felton E, Mabray MC, Villanueva-Meyer JE, Mueller S, et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol. 2017;38:795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mabray MC, Barajas RF Jr, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat. 2015;3:8–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rossi A, Gandolfo C, Morana G, Severino M, Garrè ML, Cama A. New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr Radiol. 2010;40:999–1009.

    Article  PubMed  Google Scholar 

  6. Morana G, Piccardo A, Garrè ML, Nozza P, Consales A, Rossi A. Multimodal magnetic resonance imaging and 18F-L-dihydroxyphenylalanine positron emission tomography in early characterization of pseudoresponse and nonenhancing tumor progression in a pediatric patient with malignant transformation of ganglioglioma treated with bevacizumab. J Clin Oncol. 2013;31:e1–5.

    Article  PubMed  Google Scholar 

  7. Morana G, Piccardo A, Tortora D, Puntoni M, Severino M, Nozza P, et al. Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET. Eur J Nucl Med Mol Imaging. 2017;44:2084–93.

    Article  CAS  PubMed  Google Scholar 

  8. Morana G, Piccardo A, Puntoni M, Nozza P, Cama A, Raso A, et al. Diagnostic and prognostic value of 18F-DOPA PET and 1H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro-Oncology. 2015;17:1637–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morana G, Piccardo A, Garrè ML, Cabria M, Rossi A. 18F-DOPA uptake of developmental venous anomalies in children with brain tumors. Clin Nucl Med. 2016;41:e351–2.

    Article  PubMed  Google Scholar 

  10. Morana G, Piccardo A, Milanaccio C, Puntoni M, Nozza P, Cama A, et al. Value of 18F-3,4-dihydroxyphenylalanine PET/MR image fusion in pediatric supratentorial infiltrative astrocytomas: a prospective pilot study. J Nucl Med. 2014;55:718–23.

    Article  CAS  PubMed  Google Scholar 

  11. Berntsson SG, Falk A, Savitcheva I, Godau A, Zetterling M, Hesselager G, et al. Perfusion and diffusion MRI combined with 11C-methionine PET in the preoperative evaluation of suspected adult low-grade gliomas. J Neuro-Oncol. 2013;11:241–9.

    Article  CAS  Google Scholar 

  12. Lapin DH, Tsoli M, Ziegler DS. Genomic insights into diffuse intrinsic pontine glioma. Front Oncol. 2017;7:57.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, et al. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. 2014;127:881–95.

    Article  CAS  PubMed  Google Scholar 

  14. Funato K, Major T, Lewis PW, Allis CD, Tabar V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science. 2014;346:1529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang TY, Piunti A, Lulla RR, Qi J, Horbinski CM, Tomita T, et al. Detection of histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun. 2017;5:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panditharatna E, Kilburn LB, Aboian MS, Kambhampati M, Gordish-Dressman H, Magge SN, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res. 2018;24:5850–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, et al. Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol. 2014;35:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281:553–66.

    Article  PubMed  Google Scholar 

  20. Heiss WD, Raab P, Lanfermann H. Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med. 2011;52:1585–600.

    Article  CAS  PubMed  Google Scholar 

  21. Fink JR, Muzi M, Peck M, Krohn KA. Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J Nucl Med. 2015;56:1554–61.

    Article  CAS  PubMed  Google Scholar 

  22. Morana G, Puntoni M, Garrè ML, Massollo M, Lopci E, Naseri M, et al. Ability of (18)F-DOPA PET/CT and fused (18)F-DOPA PET/MRI to assess striatal involvement in paediatric glioma. Eur J Nucl Med Mol Imaging. 2016;43:1664–72.

    Article  CAS  PubMed  Google Scholar 

  23. Lequin M, Hendrikse J. Advanced MR imaging in pediatric brain tumors, clinical applications. Neuroimaging Clin N Am. 2017;27:167–90.

    Article  PubMed  Google Scholar 

  24. Keil VC, Hartkamp NS, Connolly DJA, Morana G, Dremmen MHG, Mutsaerts HJMM, et al. Added value of arterial spin labeling magnetic resonance imaging in pediatric neuroradiology: pitfalls and applications. Pediatr Radiol. 2019;49:245–53.

    Article  PubMed  Google Scholar 

  25. Morana G, Tortora D, Staglianò S, Nozza P, Mascelli S, Severino M, et al. Pediatric astrocytic tumor grading: comparison between arterial spin labeling and dynamic susceptibility contrast MRI perfusion. Neuroradiology. 2018;60:437–46.

    Article  PubMed  Google Scholar 

  26. Novak J, Withey SB, Lateef S, MacPherson L, Pinkey B, Peet AC. A comparison of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast MRI with and without contrast agent leakage correction in paediatric brain tumours. Br J Radiol. 2019;92:20170872.

    Article  PubMed  Google Scholar 

  27. Hipp SJ, Steffen-Smith EA, Patronas N, Herscovitch P, Solomon JM, Bent RS, et al. Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using 18F-FDG-PET and MRSI. J Neuro-Oncol. 2012;109:521–7.

    Article  CAS  Google Scholar 

  28. Hourani R, Horska´ A, Albayram S, Brant LJ, Melhem E, Cohen KJ, et al. Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging. 2006;23:99–107.

    Article  PubMed  Google Scholar 

  29. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46:540–57.

    Article  CAS  PubMed  Google Scholar 

  30. Barker PB, Bizzi A, De Stefano N, Gullapalli R, Lin DM. MR spectroscopy in brain tumors. In: Barker PB, Bizzi A, De Stefano N, Gullapalli R, Lin DM, editors. Clinical MR spectroscopy: techniques and applications. New York: Cambridge University Press; 2010. pp 61–90.

    Google Scholar 

  31. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73:102–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Morana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with animals performed by any of the authors.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants or their legal guardians included in the study, and patient assent was obtained whenever appropriate.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrea Rossi and Giovanni Morana are joint last authors.

Electronic supplementary material

ESM 1

(DOCX 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccardo, A., Tortora, D., Mascelli, S. et al. Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging 46, 1685–1694 (2019). https://doi.org/10.1007/s00259-019-04333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04333-4

Keywords

Navigation