Skip to main content
Log in

Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The prognostic value of PET with (18F)-fluoro-2-deoxy-d-glucose (FDG) has been shown in high-grade gliomas (HGG), but not compared with consensual prognostic factors. We sought to evaluate the independent predictive value of pre-treatment FDG-PET on overall (OS) and event-free survival (EFS). We retrospectively analyzed 41 patients with histologically-confirmed HGG (31 glioblastomas and 10 anaplastic gliomas). The pre-treatment uptake of FDG was assessed qualitatively by five-step visual metabolic grading, and quantitatively by the ratio between the tumor and contralateral maximal standardized uptake value (T/CL). EFS and OS following PET were compared with FDG uptake by univariate analysis, and by two multivariate analyses: one including main consensual prognostic factors (age, KPS, extent of surgery and histological grade), and the other including the classification system of the Radiation Therapy Oncology Group (Recursive Partitioning Analysis, RPA). Median OS and EFS were 13.8 and 7.4 months, respectively, for glioblastomas, and over 25.8 and 12 months, respectively, for anaplastic gliomas (P = 0.040 and P = 0.027). The T/CL ratio predicted OS in the entire group [P = 0.003; Hazard Ratio (HR) = 2.3] and in the glioblastoma subgroup (P = 0.018; HR = 2), independently of age, Karnofsky performance status, histological grade, and surgery, and independently of RPA classification. T/CL ratio tended to predict EFS in the whole group (P = 0.052). The prognostic value of visual metabolic grade on OS was less significant than T/CL ratio, both in the entire group and in the glioblastoma subgroup (P = 0.077 and P = 0.059). Quantitative evaluation of the ratio between the maximal tumor and contralateral uptake in pre-treatment FDG-PET provides significant additional prognostic information in newly-diagnosed HGG, independently of consensual prognostic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kleihues P, Cavenee WK (2000) World Health Organization Classification of Tumours.Pathology and genetics of tumours of the nervous system. IARC Press, Lyon

    Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  3. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  4. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    PubMed  CAS  Google Scholar 

  5. Curran WJ Jr, Scott CB, Horton J et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85:704–710

    Article  PubMed  Google Scholar 

  6. Gupta T, Sarin R (2002) Poor-prognosis high-grade gliomas: evolving an evidence-based standard of care. Lancet Oncol 3:557–564

    Article  PubMed  Google Scholar 

  7. Gorlia T, van den Bent MJ, Hegi ME et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981–22981/CE.3. Lancet Oncol 9:29–38

    Article  PubMed  Google Scholar 

  8. Mittler MA, Walters BC, Stopa EG (1996) Observer reliability in histological grading of astrocytoma stereotactic biopsies. J Neurosurg 85:1091–1094

    Article  PubMed  CAS  Google Scholar 

  9. Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK (1997) Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer 79:1381–1393

    Article  PubMed  CAS  Google Scholar 

  10. Morita M, Rosenblum MK, Bilsky MH, Fraser RA, Rosenfeld MR (1996) Long-term survivors of glioblastoma multiforme: clinical and molecular characteristics. J Neurooncol 27:259–266

    Article  PubMed  CAS  Google Scholar 

  11. Scott JN, Rewcastle NB, Brasher PM et al (1999) Which glioblastoma multiforme patient will become a long-term survivor? A population-based study. Ann Neurol 46:183–188

    Article  PubMed  CAS  Google Scholar 

  12. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  13. Bourguet P, Blanc-Vincent MP, Boneu A et al (2003) Summary of the standards, options and recommendations for use of positron emission tomography with 2[18F]fluoro-2-deoxy-d-glucose (FDP-PET scanning) in oncology (2002). Br J Cancer 89:S84–S91

    Article  PubMed  Google Scholar 

  14. Vander Borght T, Asenbaum S, Bartenstein P et al (2006) EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 33:1374–1380

    Article  PubMed  CAS  Google Scholar 

  15. Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by (18F) fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  CAS  Google Scholar 

  16. De Witte O, Lefranc F, Levivier M, Salmon I, Brotchi J, Goldman S (2000) FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 49:157–163

    Article  PubMed  Google Scholar 

  17. Alavi JB, Alavi A, Chawluk J et al (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  18. Mineura K, Sasajima T, Kowada M et al (1994) Perfusion and metabolism in predicting the survival of patients with cerebral gliomas. Cancer 73:2386–2394

    Article  PubMed  CAS  Google Scholar 

  19. Barker FG II, Chang SM, Valk PE, Pounds TR, Prados MD (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126

    Article  PubMed  CAS  Google Scholar 

  20. Kim CK, Alavi JB, Alavi A, Reivich M (1991) New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose. J Neurooncol 10:85–91

    Article  PubMed  CAS  Google Scholar 

  21. Patronas NJ, Di Chiro G, Kufta C et al (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62:816–822

    Article  PubMed  CAS  Google Scholar 

  22. Padma MV, Said S, Jacobs M et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64:227–237

    Article  PubMed  CAS  Google Scholar 

  23. Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  24. Colavolpe C, Guedj E, Metellus P et al (2008) FDG-PET to predict different patterns of progression in multicentric glioblastoma: a case report. J Neurooncol 90:47–51

    Article  PubMed  Google Scholar 

  25. Spence AM, Muzi M, Graham MM et al (2002) 2-(18F)Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin Cancer Res 8:971–979

    PubMed  Google Scholar 

  26. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    PubMed  CAS  Google Scholar 

  27. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-(18F)-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  CAS  Google Scholar 

  28. Schifter T, Hoffman JM, Hanson MW et al (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17:509–561

    Article  PubMed  CAS  Google Scholar 

  29. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  30. Pardo FS, Aronen HJ, Fitzek M et al (2004) Correlation of FDG-PET interpretation with survival in a cohort of glioma patients. Anticancer Res 24:2359–2365

    PubMed  Google Scholar 

  31. Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B (2006) Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 246:85–94

    Article  PubMed  Google Scholar 

  32. Giammarile F, Cinotti LE, Jouvet A et al (2004) High and low grade oligodendrogliomas (ODG): correlation of amino-acid and glucose uptakes using PET and histological classifications. J Neurooncol 68:263–274

    Article  PubMed  CAS  Google Scholar 

  33. Meyer PT, Schreckenberger M, Spetzger U   et al (2001) Comparison of visual and ROI-based brain tumour grading using 18F-FDG PET: ROC analyses. Eur J Nucl Med 28:165–174

    Article  PubMed  CAS  Google Scholar 

  34. Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A (1999) Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 26:1501–1509

    Article  PubMed  CAS  Google Scholar 

  35. Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59

    Article  PubMed  CAS  Google Scholar 

  36. Pötzi C, Becherer A, Marosi C et al (2007) (11C) methionine and (18F) fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol 84:305–314

    Article  PubMed  Google Scholar 

  37. Herholz K, Wienhard K, Heiss WD (1990) Validity of PET studies in brain tumors. Cerebrovasc Brain Metab Rev 2:240–265

    PubMed  CAS  Google Scholar 

  38. Goldman S, Levivier M, Pirotte B et al (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78:1098–1106

    Article  PubMed  CAS  Google Scholar 

  39. Macbeth RAL, Bekesi JG (1962) Oxygen consumption and anaerobic glycolysis of human malignant and normal tissue. Cancer Res 22:244–248

    PubMed  CAS  Google Scholar 

  40. Yamamoto T, Seino Y, Fukumoto H et al (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170:223–230

    Article  PubMed  CAS  Google Scholar 

  41. Graham JF, Cummins CJ, Smith BH, Kornblith PL (1985) Regulation of hexokinase in cultured gliomas. Neurosurgery 17:537–542

    Article  PubMed  CAS  Google Scholar 

  42. Galanaud D, Chinot O, Metellus P, Cozzone P (2005) Magnetic resonance spectroscopy in gliomas. Bull Cancer 92:327–331

    PubMed  Google Scholar 

  43. Hamstra DA, Chenevert TL, Moffat BA et al (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 102:16759–16764

    Article  PubMed  CAS  Google Scholar 

  44. De Witte O, Goldberg I, Wikler D et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750

    Article  PubMed  Google Scholar 

  45. Nojiri T, Nariai T, Aoyagi M et al (2009) Contributions of biological tumor parameters to the incorporation rate of L[methyl-(11)C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 93:233–241

    Article  PubMed  CAS  Google Scholar 

  46. Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2–18F-fluoroethyl)-l-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527

    Article  PubMed  CAS  Google Scholar 

  47. Torii K, Tsuyuguchi N, Kawabe J et al (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683

    Article  PubMed  Google Scholar 

  48. Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549

    Article  PubMed  CAS  Google Scholar 

  49. Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942

    Article  PubMed  Google Scholar 

  50. Talbot JN, Kerrou K, Montravers F, Nataf V, Chevalme Y (2007) FDOPA PET has clinical utility in brain tumour imaging: a proposal for a revision of the recent EANM guidelines. Eur J Nucl Med Mol Imaging 34:1131–1132

    Article  PubMed  Google Scholar 

  51. Heiss WD, Wienhard K, Wagner R et al (1996) F-dopa as an amino acid tracer to detect brain tumors. J Nucl Med 37:1180–1182

    PubMed  CAS  Google Scholar 

  52. Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  53. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    PubMed  CAS  Google Scholar 

  54. Cher LM, Murone C, Lawrentschuk N et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47:410–418

    PubMed  CAS  Google Scholar 

  55. Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol 11:861–870

    Article  PubMed  Google Scholar 

  56. Spence AM, Muzi M, Mankoff DA et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  57. Di Chiro G (1987) Positron emission tomography using (18F) fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360–371

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guedj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colavolpe, C., Metellus, P., Mancini, J. et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J Neurooncol 107, 527–535 (2012). https://doi.org/10.1007/s11060-011-0771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0771-6

Keywords

Navigation