Skip to main content

Diagnostic Applications of Nuclear Medicine: Prostatic Cancer

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

Prostate cancer (PCa) is one of the most common cancers in the male population. Its incidence, mortality, and prevalence are different across different geographical areas, depending on the different approaches adopted for screening, early diagnosis, and availability of treatments. Digital rectal exploration (DRE) and the prostate-specific antigen (PSA) test are the most common clinical procedure used for PCa screening.

The choice of treatment should be patient specific and risk adjusted. The therapeutic approaches for patients with PCa include different options: watchful waiting, radical prostatectomy, radiotherapy, hormone therapy, chemotherapy, immunotherapy, and treatment of bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACP:

American College of Physicians

ACS:

American Cancer Society

ADT:

Androgen deprivation therapy

AJCC:

American Joint Committee on Cancer

ALP:

Alkaline phosphatase

AS:

Active surveillance

ASCO:

American Society of Clinical Oncology

AUA:

American Urological Association

BS:

Bone scintigraphy

BSI:

Bone scan index

[11C]CHO:

[11C]choline

CRPC:

Castrate-resistant prostate cancer

CT:

X-ray computed tomography

CTX:

C-terminal telopeptide of type I collagen

CYP17:

17-Alpha-monooxygenase, a crucial enzyme for the synthesis of testosterone from non-gonadal sources

DCE MRI:

Dynamic contrast-enhanced magnetic resonance imaging

DRE:

Digital rectal exploration

DWI:

Diffusion-weighted imaging, an MR imaging technique

EBRT:

External beam radiation therapy

ED:

Effective dose

EMA:

European Medicines Agency

ERG:

ETS-related gene

ETS:

E26 transformation-specific family

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

[18F]FDHT:

16β-[18F]fluoro-5-dihydrotestosterone

18F-CHO:

18F-fluoromethylcholine

18F-DCFBC:

N-[N-{(S)-1,3-dicarboxypropyl]carbamoyl}4-18F-fluorobenzyl-L-cysteine

18F-DCFPyLis:

2-[3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentil}-ureido]-pentanedioic acid

18F-FACBC:

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid, or 18F-fluciclovine

18F-NaF:

18F-sodium fluoride

3D CRT:

Three-dimensional conformal radiotherapy

FDA:

United States Food and Drug Administration

68Ga-PSMA:

Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)]

GLUT:

Glucose transporter family

GS:

Gleason score

HDR:

High-dose rate radiotherapy

HIFU:

High-intensity focused ultrasound

ICTP:

Cross-linked carboxyterminal telopeptide of type I collagen

IGRT:

Image-guided radiotherapy

IMRT:

Intensity-modulated radiotherapy

LDR:

Low-dose rate radiotherapy

LH:

Luteinizing hormone

LHRH:

Luteinizing hormone-releasing hormone

M:

Metastasis status according to the AJCC/UICC TNM staging system

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

NCCN:

National Comprehensive Cancer Network

NOPR:

United States National Oncologic PET Registry

NPV:

Negative predictive value

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PCa:

Prostate cancer

PERCIST:

Positron emission tomography response criteria in solid tumors

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PET/MR:

Positron emission tomography/magnetic resonance

PET/MRI:

Positron emission tomography/magnetic resonance imaging

PINP:

Amino-terminal procollagen propeptide type I

PPV:

Positive predictive value

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

RANK:

Receptor activator of nuclear factor kappa-B

RANKL:

Receptor activator of nuclear factor kappa-B ligand, also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiation factor (ODF)

RARP:

Robot-assisted radical prostatectomy

RECIST:

Response evaluation criteria in solid tumors

ROC:

Receiver operating characteristic, a statistical analysis to assess the performance of a binary classifier

RT:

Radiotherapy

SNMMI:

Society of Nuclear Medicine and Molecular Imaging

SPECT:

Single photon emission computed tomography

SPECT/CT:

Single photon emission computed tomography/computed tomography

SRE:

Skeletal related event

SUV:

Standardized uptake value

SUVmax:

Standardized uptake value at point of maximum

99mTc-HMDP:

99mTc-hydroxymethylene diphosphonate

99mTc-MDP:

99mTc-methylene diphosphonate

T:

Tumor status according to the AJCC/UICC TNM staging system

TMPRSS2:

Transmembrane protease, serine 2

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status) and “M” (distant metastasis status)

TRUS:

Transrectal ultrasound

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

US:

Ultrasonography

USPSTF:

United States Preventive Services Task Force

WB:

Whole body

WBS:

Whole-body scan

References

  1. Ferlay J, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC cancer base No. 11 [internet]. International Agency for Research on Cancer: Lyon; 2013. Available from: http://www.globocan.iarc.fr. Last accessed on 12 June 2016.

    Google Scholar 

  2. Center MM, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  4. Aly M, et al. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur Urol. 2011;60:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iwasaki M, et al. Secular trends in cancer mortality among Japanese immigrants in the state of São Paulo, Brazil, 1979–2001. Eur J Cancer Prev. 2008;17:1–8.

    Article  PubMed  Google Scholar 

  6. Couto E, et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br J Cancer. 2011;104:1493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fine SW, et al. Anatomy of the anterior prostate and extraprostatic space: a contemporary surgical pathology analysis. Adv Anat Pathol. 2007;14:401–7.

    Article  PubMed  Google Scholar 

  8. NCCN National Comprehensive Cancer Network. Clinical practice guidelines in oncology version 2.2016 staging prostate cancer. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Last accessed on 27 Feb 2016.

  9. Wolf AM, et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin. 2010;60:70–98.

    Article  PubMed  Google Scholar 

  10. Hammerer PG, et al. Using prostate-specific antigen screening and nomograms to asses risk and predict outcomes in the management of prostate cancer. BIU Int. 2006;98:11–9.

    Google Scholar 

  11. Boczko J, Messing E, Dogra V. Transrectal sonography in prostate evaluation. Radiol Clin N Am. 2006;44:679–87.

    Article  PubMed  Google Scholar 

  12. Djavan B, et al. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: results of a prospective European prostate cancer detection study. J Urol. 2001;166:856–60.

    Article  CAS  PubMed  Google Scholar 

  13. Yacoub JH, Oto A, Miller FH. MR imaging of the prostate. In: Miller FH, editor. Adult body MR. Pennsylvania: Elsevier; 2014. p. 811–37.

    Google Scholar 

  14. Epstein JI, et al. Acinar adenocarcinoma. In: Eble JN, Sauter G, Epstein JI, editors. WHO classification of tumors, pathology & genetics. Tumors of the urinary system and male genital organs. Lyon: IARC Press; 2004. p. 162–98.

    Google Scholar 

  15. Epstein JI, et al. The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29:1228–42.

    Article  PubMed  Google Scholar 

  16. Schroder FH. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur Urol. 2008;53:1129–37.

    Article  PubMed  CAS  Google Scholar 

  17. Ramsay AK, Leung HY. Signalling pathways in prostate carcinogenesis: potentials for molecular-targeted therapy. Clin Sci (Lond). 2009;117:209–28.

    Article  CAS  Google Scholar 

  18. Klocker H, et al. Mechanism of androgen receptor activation and possible implications for chemoprevention trials. Eur Urol. 1999;35:413–9.

    Article  CAS  PubMed  Google Scholar 

  19. Heidenreich A, et al. EAU guidelines on prostate cancer. Eur Urol. 2008;53:68–80.

    Article  PubMed  Google Scholar 

  20. Sood A, et al. Role of robot-assisted radical prostatectomy in the management of high-risk prostate cancer. Indian J Urol. 2014;30:410–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. AJCC Cancer Staging Manual. 7th ed. Part IX: genitourinary sites. New York: Springer; 2010. p. 445–78.

    Google Scholar 

  22. Klein EA, et al. Initial approach to low- and very low risk clinically localized prostate cancer. UpToDate www.uptodate.com. 2016.

  23. Thompson I, et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. 2007;177:2106.

    Article  PubMed  Google Scholar 

  24. Chen RC, et al. Active surveillance for the management of localized prostate cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J Clin Oncol. 2016;34:2182–90.

    Article  PubMed  Google Scholar 

  25. Catalona WJ, Bigg SW. Nerve-sparing radical prostatectomy: evaluation of results after 250 patients. J Urol. 1990;143:538–43.

    Article  CAS  PubMed  Google Scholar 

  26. Corral DA, Bahnson RR. Survival of men with clinically localized prostate cancer detected in the eighth decade of life. J Urol. 1994;151:1326–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zincke H, et al. Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol. 1994;12:2254–63.

    Article  CAS  PubMed  Google Scholar 

  28. Ko WJ, et al. Pathological confirmation of nerve-sparing types performed during robot assisted radical prostatectomy. BJU. 2013;111:451–8.

    Article  Google Scholar 

  29. Montorsi F, et al. Best practice in robot-assisted radical prostatectomy: recommendations of the Pasadena Consensus Panel. Eur Urol. 2012;62:368–81.

    Article  PubMed  Google Scholar 

  30. Carter SC, Shih YC, Hu JC. Robotic and standard open radical prostatectomy: oncological and quality-of-life outcomes. J Comp Eff Res. 2013;2:293–9.

    Article  PubMed  Google Scholar 

  31. Ling CC, et al. From IMRT to IGRT: frontierland or neverland? Radiother Oncol. 2006;78:119.

    Article  PubMed  Google Scholar 

  32. Latorzeff I, et al. Benefit of intensity modulated ad image-guided radiotherapy in prostate cancer. Cancer Radiother. 2010;14:479–87.

    Article  CAS  PubMed  Google Scholar 

  33. Dal Pra A, Souhami L. Prostate cancer radiation therapy: a physicians perspective. Phys Med. 2016;32:438–45.

    Article  PubMed  Google Scholar 

  34. Hamdy FC, et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med. 2016;375:1415–24.

    Article  PubMed  Google Scholar 

  35. Viani GA, et al. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74:1405.

    Article  PubMed  Google Scholar 

  36. Kuban DA, et al. Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys. 2011;79:1310.

    Article  PubMed  Google Scholar 

  37. Beckendorf V, et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80:1056.

    Article  PubMed  Google Scholar 

  38. Heemsbergen WD, et al. Long-term results of the Dutch randomized prostate cancer trial: impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother Oncol. 2014;110:104.

    Article  PubMed  Google Scholar 

  39. Michalski JM, et al. Effect of standard vs dose-escalated radiation therapy for patients with intermediate-risk prostate cancer: the NRG oncology RTOG 0126 randomized clinical trial. JAMA Oncol. 2018;4:e180039.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zumsteg ZS, et al. Effect of androgen deprivation on long-term outcomes of intermediate-risk prostate cancer stratified as favorable or unfavorable: a secondary analysis of the RTOG 9408 randomized clinical trial. JAMA Netw Open. 2020;3(9):e2015083.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lawton CAF, et al. Duration of androgen deprivation in locally advanced prostate cancer: long-term update of NRG oncology RTOG 9202. Int J Radiat Oncol Biol Phys. 2017;98:296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nabid A, et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized phase III trial. Eur Urol. 2018;74:432–1.

    Article  CAS  PubMed  Google Scholar 

  43. Fowler JF. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol. 2005;44:265.

    Article  PubMed  Google Scholar 

  44. Dearnaley D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17:1047–60.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Incrocci L, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17:1061–9.

    Article  PubMed  Google Scholar 

  46. Lee WR, et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34:2325–32.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Catton CN, et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35:1884–90.

    Article  CAS  PubMed  Google Scholar 

  48. Widmark A, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 2019;394:385.

    Article  PubMed  Google Scholar 

  49. Brand DH, et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2019;20:1531.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mottet N, et al. EAU-EANM-ESTRO-ESUR–SIOG guidelines on prostate cancer – 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2021;79:243–62.

    Article  CAS  PubMed  Google Scholar 

  51. Thompson IM, et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol. 2009;181:956.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bolla M, et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet. 2012;380:2018.

    Article  PubMed  Google Scholar 

  53. Wiegel T, et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur Urol. 2014;66:243.

    Article  PubMed  Google Scholar 

  54. Stephenson AJ, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25:2035.

    Article  PubMed  Google Scholar 

  55. Wiegel T, et al. Achieving an undetectable PSA after radiotherapy for biochemical progression after radical prostatectomy is an independent predictor of biochemical outcome – results of a retrospective study. Int J Radiat Oncol Biol Phys. 2009;73:1009.

    Article  PubMed  Google Scholar 

  56. Vale CL, et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet. 2020;396:1422–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Parker CC, et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): a randomised, controlled phase 3 trial. Lancet. 2020;39:1413–21.

    Article  Google Scholar 

  58. Sargos P, et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol. 2020;21:1341–52.

    Article  CAS  PubMed  Google Scholar 

  59. Kneebone A, et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 2020;21:1331–40.

    Article  CAS  PubMed  Google Scholar 

  60. Zaorsky NG, et al. The evolution of brachytherapy for prostate cancer. Nat Rev Urol. 2017;14:415–39.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zaorsky NG, et al. High dose rate brachytherapy boost for prostate cancer: a systematic review. Cancer Treat Rev. 2014;40:414–25.

    Article  PubMed  Google Scholar 

  62. Zaorsky NG, et al. Comparison of outcomes and toxicities among radiation therapy treatment options for prostate cancer. Cancer Treat Rev. 2016;48:50–60.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morris WJ, et al. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT Trial): an analysis of survival endpoints for a randomized trial comparing a low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2017;98:275–85.

    Article  PubMed  Google Scholar 

  64. Hoskin PJ, et al. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother Oncol. 2012;103:217–22.

    Article  PubMed  Google Scholar 

  65. Dayes IS, Parpia S, Gilbert J, et al. Long-term results of a randomized trial comparing iridium implant plus external beam radiation therapy with external beam radiation therapy alone in node-negative locally advanced cancer of the prostate. Int J Radiat Oncol Biol Phys. 2017;99:90–3.

    Article  PubMed  Google Scholar 

  66. Tsivian M, Polascick TJ. Cryotherapy in management of prostate cancer. In: Bolla M, van Poppel H, editors. Management of prostate cancer. Berlin: Springer; 2012. p. 213–23.

    Chapter  Google Scholar 

  67. Gelet A, et al. High-intensity focused ultrasound (HIFU) for prostate cancer. In: Bolla M, van Poppel H, editors. Management of prostate cancer. Berlin: Springer; 2012. p. 191–212.

    Chapter  Google Scholar 

  68. Rusthoven CG, et al. Improved survival with prostate radiation in addition to androgen deprivation therapy for men with newly diagnosed metastatic prostate cancer. J Clin Oncol. 2016;34:2835–42.

    Article  CAS  PubMed  Google Scholar 

  69. Löppenberg B, et al. The impact of local treatment on overall survival in patients with metastatic prostate cancer on diagnosis: a national cancer data base analysis. Eur Urol. 2017;72:14–9.

    Article  PubMed  Google Scholar 

  70. Boevé LMS, et al. Effect on survival of androgen deprivation therapy alone compared to androgen deprivation therapy combined with concurrent radiation therapy to the prostate in patients with primary bone metastatic prostate cancer in a prospective randomised clinical trial: data from the HORRAD trial. Eur Urol. 2019;75:410.

    Article  PubMed  Google Scholar 

  71. Parker CC, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet. 2018;392:2353.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Burdett S, et al. Prostate radiotherapy for metastatic hormone-sensitive prostate cancer: a STOPCAP systematic review and meta-analysis. Eur Urol. 2019;76:115–24.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deek MP, Tran PT. Oligometastatic and oligoprogression disease and local therapies in prostate cancer. Cancer J. 2020;26:137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morris MJ, et al. Optimizing anticancer therapy in metastatic non-castrate prostate cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;36:1521–39.

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen PL, et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Eur Urol. 2015;67:825–36.

    Article  CAS  PubMed  Google Scholar 

  76. Ost P, et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol. 2018;36:446–53.

    Article  CAS  PubMed  Google Scholar 

  77. Ost P, et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence (STOMP): five-year results of a randomized phase II trial. J Clin Oncol. 2020;38(6 Suppl).

    Google Scholar 

  78. Phillips R, et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: the ORIOLE Phase 2 randomized clinical trial. JAMA Oncol. 2020;6:650.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Palma DA, et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET Phase II randomized trial. J Clin Oncol. 2020;38:2830.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Viani GA, et al. Stereotactic body radiotherapy for oligometastatic prostate cancer recurrence: a meta-analysis. Am J Clin Oncol. 2020;43:73.

    Article  PubMed  Google Scholar 

  81. Schweizer MT, et al. Two steps forward and one step back for precision in prostate cancer treatment. J Clin Oncol. 2020;38:3740–3.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shore ND, et al. Oral relugolix for androgen-deprivation therapy in advanced prostate cancer. N Engl J Med. 2020;382:2187–96.

    Article  CAS  PubMed  Google Scholar 

  83. Gravis G, et al. Androgen deprivation therapy (ADT) plus docetaxel versus ADT alone in metastatic non castrate prostate cancer: impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 trial. Eur Urol. 2016;70:256–62.

    Article  CAS  PubMed  Google Scholar 

  84. Sweeney CJ, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373:737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. James ND, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage platform randomized controlled trial. Lancet. 2016;387:1163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vale CL, et al. Addition of docetaxel or bisphosphonates to standard of care in men with localized or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016;17:243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fizazi K, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377:352–60.

    Article  CAS  PubMed  Google Scholar 

  88. James ND, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377:338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Armstrong AJ, et al. ARCHES: a randomized, Phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2019;37:2974–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davis ID, et al. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med. 2019;381:121–31.

    Article  CAS  PubMed  Google Scholar 

  91. Chi KN, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381:13–24.

    Article  CAS  PubMed  Google Scholar 

  92. Sydes MR, et al. Adding abiraterone or docetaxel to long-term hormone therapy for prostate cancer: directly randomized data from the STAMPEDE multiarm, multistage platform protocol. Ann Oncol. 2018;29:1235–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xie W, et al. Metastasis-free survival is a strong surrogate of overall survival in localized prostate cancer. J Clin Oncol. 2017;35:3097–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Smith MR, et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol. 2013;31:3800–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Smith MR, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med. 2018;378:1408–18.

    Article  CAS  PubMed  Google Scholar 

  96. Hussain M, et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med. 2018;378:2465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fizazi K, et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. N Engl J Med. 2019;380:1235–46.

    Article  CAS  PubMed  Google Scholar 

  98. Smith MR, et al. Apalutamide and overall survival in prostate cancer. Eur Urol. 2021;79:150–8.

    Article  CAS  PubMed  Google Scholar 

  99. Sternberg CN, et al. Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N Engl J Med. 2020;382:2197–206.

    Article  CAS  PubMed  Google Scholar 

  100. Fizazi K, et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. N Engl J Med. 2020;383:1040–9.

    Article  CAS  PubMed  Google Scholar 

  101. Tannock IF, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12.

    Article  CAS  PubMed  Google Scholar 

  102. de Bono JS, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scher HI, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–97.

    Article  CAS  PubMed  Google Scholar 

  104. Ryan CJ, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.

    Article  CAS  PubMed  Google Scholar 

  105. Beer TM, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. de Bono JS, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376:1147–54.

    Article  PubMed  CAS  Google Scholar 

  107. de Wit R, et al. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. N Engl J Med. 2019;381:2506–18.

    Article  PubMed  Google Scholar 

  108. Mateo J, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373:1697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de Bono J, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382:2091–102.

    Article  PubMed  Google Scholar 

  110. Abida W, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol. 2020;38:3763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kantoff PW, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  112. Kantoff PW, et al. Overall survival analysis of a phase II randomized controlled trial a Poxviral based PSA-target immunotherapy in metastatic castraction-resistant prostate cancer. J Clin Oncol. 2010;28:1099–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van den Eertwegh AJ, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castraction-resistant prostate cancer: a phase I dose-escalation trial. Lancet Oncol. 2012;13:509–17.

    Article  PubMed  CAS  Google Scholar 

  114. Kwon ED, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Quinn DI, et al. Immunotherapy for castration-resistant prostate cancer: progress and new paradigms. Urol Oncol. 2015;33:245–50.

    Article  CAS  PubMed  Google Scholar 

  116. Slovin SF, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24:1813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fizazi K, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parker C, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  119. Hoskin P, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014;15:1397–406.

    Article  CAS  PubMed  Google Scholar 

  120. Smith M, et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostatecancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:408–19.

    Article  CAS  PubMed  Google Scholar 

  121. Sandblom G, et al. The impact of prostate-specific antigen level at diagnosis on the relative survival of 28,531 men with localized carcinoma of the prostate. Cancer. 2008;112:813–9.

    Article  PubMed  Google Scholar 

  122. Roehrborn CG, et al. Serum prostate specific antigen is a strong predictor of future prostate growth in men with benign prostatic hyperplasia. PROSCAR long-term efficacy and safety study. J Urol. 2000;163:13–20.

    Article  CAS  PubMed  Google Scholar 

  123. Yang Z, Yu L, Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res. 2016;28:65–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Freedland SJ, Moul JW. Prostate specific antigen recurrence after definitive therapy. J Urol. 2007;177:1985–91.

    Article  PubMed  Google Scholar 

  125. Briganti A, et al. Predicting the risk of bone metastasis in prostate cancer. Cancer Treat Rev. 2014;40:3–11.

    Article  CAS  PubMed  Google Scholar 

  126. Onukwugha E, et al. Skeletal-related events and mortality among older men with advanced prostate cancer. J Geriatr Oncol. 2014;5:281–9.

    Article  PubMed  Google Scholar 

  127. Costa L, et al. Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol. 2002;20:850–6.

    Article  CAS  PubMed  Google Scholar 

  128. Koizumi M, et al. The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU Int. 2001;87:348–51.

    Article  CAS  PubMed  Google Scholar 

  129. Koopmans N, et al. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: a longitudinal approach. J Urol. 2007;178:849–53.

    Article  CAS  PubMed  Google Scholar 

  130. Zafeirakis AG, Papatheodorou GA, Limouris GS. Clinical and imaging correlations of bone turnover markers in prostate cancer patients with bone only metastases. Nucl Med Commun. 2010;31:249–53.

    Article  PubMed  Google Scholar 

  131. Coleman RE, et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol. 2005;23:4925–35.

    Article  CAS  PubMed  Google Scholar 

  132. Cook RJ, et al. Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2006;12:3361–7.

    Article  CAS  PubMed  Google Scholar 

  133. Smith MR, et al. Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology. 2007;70:315–9.

    Article  PubMed  Google Scholar 

  134. Gomella LG, et al. Ultrasound contrast agent for prostate imaging and biopsy. Urol Oncol. 2001;6:189–92.

    Article  Google Scholar 

  135. Morelli G, Pagni R, Mariani C. Results of vardenafil mediated power Doppler ultrasound contrast enhanced ultrasounds and systematic random biopsies to detect prostate cancer. J Urol. 2011;185:2126–31.

    Article  CAS  PubMed  Google Scholar 

  136. Wink M, et al. Contrast enhanced ultrasound and prostate cancer a multicenter European research coordination project. Eur Urol. 2008;54:982–93.

    Article  PubMed  Google Scholar 

  137. Woo S, et al. Shear-wave elastography for de-tection of prostate cancer: a systematic review and diagnostic meta-analysis. AJR Am J Roentgenol. 2017;209:806–14.

    Article  PubMed  Google Scholar 

  138. Li Y, Tang J, Fei X, Gao Y. Diagnostic performance of contrast enhanced ultra-sound in patients with prostate cancer: a meta-analysis. Acad Radiol. 2013;20:156–64.

    Article  PubMed  Google Scholar 

  139. Taneja SS. Imaging in the diagnosis and management of prostate cancer. Rev Urol. 2004;6:101–3.

    PubMed  PubMed Central  Google Scholar 

  140. Turkey B, et al. Multipar-ametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin. 2016;66:326–36.

    Article  Google Scholar 

  141. Woo S, Ghafoor S, Vargas HA. Contributionof Radiology to staging of prostate cancer. Semin Nucl Med. 2019;49:294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dickinson L, et al. Clinical application of multiparametric MRI within the prostate cancer diagnostic pathway. Urol Oncol. 2013;31:281–4.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Guneyli S, Erdem CZ, Erdem L. Magnetic resonance imaging in prostate cancer. Clin Imaging. 2016;40:601–9.

    Article  PubMed  Google Scholar 

  144. Presti JC. Repeat prostate biopsy. When, where and how. Urol Oncol. 2009;27:312–4.

    Article  PubMed  Google Scholar 

  145. Hambrock T, Somford DM, Hoeks C. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520–7.

    Article  CAS  PubMed  Google Scholar 

  146. Li B, et al. Comparison of MRS and DWI in the diagnosis of prostate cancer based on sextant analysis. J Magn Reson Imaging. 2013;37:194–200.

    Article  PubMed  Google Scholar 

  147. Weinreb JC, et al. PI-RADS prostate imaging – reporting and data system: 2015, Version 2. Eur Urol. 2016;69:16–40.

    Article  PubMed  Google Scholar 

  148. Pasougly V, et al. Whole body 3D T1 weighted MR imaging in patients with prostate cancer. Feasibility and evaluation in screening for metastatic disease. Radiology. 2015;275:155–66.

    Article  Google Scholar 

  149. Fogelman I. Diphosphonate bone scanning agents – current concepts. Eur J Nucl Med. 1982;7:506–9.

    Article  CAS  PubMed  Google Scholar 

  150. Fogelman I, et al. Skeletal uptake of diphosphonate. Method for prediction of post-menopausal osteoporosis. Lancet. 1980;2:667–70.

    Article  CAS  PubMed  Google Scholar 

  151. Love C, et al. Radionuclide for bone imaging: an illustrative review. Radiographics. 2003;23:341–58.

    Article  PubMed  Google Scholar 

  152. Bombardieri E, et al. Bone scintigraphy: procedure guidelines. Eur J Nucl Med Mol Imaging. 2003;30:BP99–106.

    PubMed  Google Scholar 

  153. Bombardieri E, et al. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion. Q J Nucl Med Mol Imaging. 2015;59:381–99.

    CAS  PubMed  Google Scholar 

  154. Gnanasegaran G, et al. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med. 2009;39:380–95.

    Article  PubMed  Google Scholar 

  155. Iagaru A, et al. Prospective evaluation of 99mTc MDP Scintigraphy, 18F-NaF PET/CT, and 18F-FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14:252–9.

    Article  PubMed  Google Scholar 

  156. Briganti A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol. 2010;57:551–8.

    Article  PubMed  Google Scholar 

  157. Passoni NM, et al. Clinical and diagnostic assessment for therapeutic decisions in prostate cancer. Q J Nucl Med Mol Imaging. 2012;56:321–30.

    CAS  PubMed  Google Scholar 

  158. Lee CT, Oesterling JE. Using prostate-specific antigen to eliminate the staging radionuclide bone scan. Urol Clin N Am. 1997;24:389–94.

    Article  CAS  Google Scholar 

  159. Chybowski FM, et al. Predicting radionuclide bone scan finding in patients with mewly diagnoses untreated prostate cancer: PSA is superior to all other clinical parameters. J Urol. 1991;145:313–8.

    Article  CAS  PubMed  Google Scholar 

  160. Kattan MW, et al. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90:766–71.

    Article  CAS  PubMed  Google Scholar 

  161. Boorjian SA, et al. Mayo Clinic validation of the D’Amico risk group classification for predicting survival following radical prostatectomy. J Urol. 2008;179:1354–60.

    Article  PubMed  Google Scholar 

  162. Lughezzani G, et al. Predictive and prognostic models in radical prostatectomy candidates: a critical analysis of the literature. Eur Urol. 2010;58:687–700.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Choi WW, et al. Overuse of imaging for staging low risk prostate cancer. J Urol. 2011;185:1645–9.

    Article  PubMed  Google Scholar 

  164. Pucar D, Sella T, Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol. 2008;18:87–97.

    Article  PubMed  Google Scholar 

  165. D’Amico AV, et al. Biochemical outcome after radical prostatectomy external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969–74.

    Article  PubMed  Google Scholar 

  166. Dotan ZA, et al. Pattern of PSA failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol. 2005;23:1962–8.

    Article  PubMed  Google Scholar 

  167. Evangelista L, et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging. 2016;43:1546–62.

    Article  CAS  PubMed  Google Scholar 

  168. Thomas C, et al. Advanced prostate cancer consensus conference (APCCC) 2015 in St. Gallen: critical review of recommendations on diagnosis and therapy of metastatic prostate cancer by a German expert panel. Urol A. 2016;55:772–82.

    Article  CAS  Google Scholar 

  169. Messiou C, Cook G, de Souza MN. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer. 2009;101:1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Levenson RM, et al. Comparative value of bone scintigraphy and radiography in monitoring tumour response in systemically treated prostatic carcinoma. Radiology. 1983;146:513–8.

    Article  CAS  PubMed  Google Scholar 

  171. Pollen JJ, Witztum KF, Ashburn WL. The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol. 1984;142:773–6.

    Article  CAS  PubMed  Google Scholar 

  172. Imbriaco M, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index. Clin Cancer Res. 1998;4:1765–72.

    CAS  PubMed  Google Scholar 

  173. Mitsui Y, et al. Prediction of survival benefit using an automated bone scan index in patients with castration-resistant prostate cancer. BJU Int. 2012;110:E628–34.

    Article  PubMed  Google Scholar 

  174. Dennis ER, et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol. 2012;10:519–24.

    Article  Google Scholar 

  175. Kaboteh R, et al. Bone scan index: a prognostic imaging for high risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res. 2013;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Poulsen MH, et al. Bone scan index predicts outcome in patients with metastatic hormone-sensitive prostate cancer. BJU Int. 2016;117:748–53.

    Article  CAS  PubMed  Google Scholar 

  177. Reza M, et al. Bone scan index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res. 2014;4:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Sarikaya I, Sarikaya A, Holder LE. The role of single photon emission computed tomography in bone imaging. Semin Nucl Med. 2001;31:3–16.

    Article  CAS  PubMed  Google Scholar 

  179. Sedonja I, Budihna NV. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med. 1999;24:407–13.

    Article  CAS  PubMed  Google Scholar 

  180. Savelli G, et al. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45:27–37.

    CAS  PubMed  Google Scholar 

  181. Romer W, et al. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med. 2006;47:1102–6.

    PubMed  Google Scholar 

  182. Gnanasegaran G, et al. Multislice SPECT/CT in benign and malignant bone disease: when the ordinary turns into the extraordinary. Semin Nucl Med. 2009;39:431–42.

    Article  PubMed  Google Scholar 

  183. Helyar V, et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37:706–13.

    Article  PubMed  Google Scholar 

  184. Ndlovu X, et al. Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun. 2010;31:659–65.

    Article  PubMed  Google Scholar 

  185. Sharma P, et al. Hybrid SPECT-CT for characterizing isolated vertebral lesions observed by bone scintigraphy: comparison with planar scintigraphy, SPECT, and CT. Diagn Interv Radiol. 2013;19:33–40.

    PubMed  Google Scholar 

  186. Palmedo H, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67.

    Article  CAS  PubMed  Google Scholar 

  187. Schirrmeister H, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  188. Even-Sapir E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  189. Segall G, et al. SNM practice guidelines of sodium 18F-fluoride PET/CT bone scan. J Nucl Med. 2010;52:1813–20.

    Article  Google Scholar 

  190. Grant FD, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  191. Beheshti M, et al. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 2015;42:1767–77.

    Google Scholar 

  192. Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73–92.

    Google Scholar 

  193. Park-Holohan SJ, Blake GM, Fogelman I. Quantitative studies of bone using 18F-fluoride and 99mTc-methylene diphosphonate: evaluation of renal and whole-blood kinetics. Nucl Med Commun. 2001;22:1037–44.

    Article  CAS  PubMed  Google Scholar 

  194. Beheshti M, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.

    Article  PubMed  Google Scholar 

  195. Araz M, Aras G, Kucuk ON. The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol. 2015;4:92–7.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Fox JJ, Schoder H, Larson SM. Molecular imaging of prostate cancer. Curr Opin Urol. 2012;22:320–7.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Apolo AB, et al. Prospective study evaluating Na18F-positron emission tomography/ computed tomography (NaF-PET/CT) in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57:886–92.

    Article  CAS  PubMed  Google Scholar 

  198. Poulsen MH, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [18F]choline positron emission tomography (PET)/computed tomography (CT) and [18F]NaF PET/CT. BJU Int. 2014;114:818–23.

    Article  CAS  PubMed  Google Scholar 

  199. Muzahir S, et al. Differentiation of metastatic vs degenerative joint disease using semi-quantitative analysis with 18F-NaF PET/CT in castrate resistant prostate cancer patients. Am J Nucl Med Mol Imaging. 2015;5:162–8.

    PubMed  PubMed Central  Google Scholar 

  200. Rosen RS, Fayad L, Wahl RL. Increased 18F-FDG uptake in degenerative disease of the spine: characterization with 18F-FDG PET/CT. J Nucl Med. 2006;47:1274–80.

    CAS  PubMed  Google Scholar 

  201. Sabbah N, et al. 18F-sodium fluoride PET/CT in oncology: an atlas of SUVs. Clin Nucl Med 2015;40:e228–31.

    Google Scholar 

  202. Hillner BE, et al. 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET Registry. J Nucl Med 2015;56:222–8.

    Google Scholar 

  203. Zukotynski KA, et al. 18F-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging 2015;5:72–82.

    Google Scholar 

  204. Jadvar H, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med 2012;37:637–43.

    Google Scholar 

  205. Wade AA, et al. Flare response in 18F-fluoride in PET bone scanning. AJR Am J Roentgenol. 2006;186:1783–6.

    Article  PubMed  Google Scholar 

  206. Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12:413–39.

    Article  CAS  PubMed  Google Scholar 

  207. Janardhan S, Srivani P, Sastry GN. Choline kinase: an important target for cancer. Curr Med Chem. 2006;13:1169–86.

    Article  CAS  PubMed  Google Scholar 

  208. De Grado TR, et al. Synthesis and evaluation of 18F-F-labeled choline as an oncologic tracer for PET: initial findings in prostate cancer. Cancer Res. 2001;61:110–7.

    Google Scholar 

  209. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.

    CAS  PubMed  Google Scholar 

  210. Tolvanen T, et al. Biodistribution and radiation dosimetry of 11C-choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–83.

    Article  CAS  PubMed  Google Scholar 

  211. Bauman G, et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 2012;15:45–55.

    Google Scholar 

  212. Chondrogiannis S, et al. New acquisition protocol of 18F-choline PET/CT in prostate cancer patients: review of the literature about methodology and proposal of standardization. Biomed Res Int 2014;2014:215650.

    Google Scholar 

  213. Evangelista L, et al. New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 2016;70:161–75.

    Article  PubMed  Google Scholar 

  214. McCarthy M, et al. 18F-fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging 2011;38:14–22.

    Google Scholar 

  215. Evangelista L, et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate-to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 2013;63:1040–8.

    Google Scholar 

  216. Beheshti M, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010;254:925–33.

    Google Scholar 

  217. Schiavina RSV, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 2008;54:392–401.

    Google Scholar 

  218. De Bari B, et al. Coline-PET in prostate cancer management: the point of view of the radiation oncologist. Crit Rev Oncol Hematol 2014;91:234–47.

    Google Scholar 

  219. Poulsen MH, et al. 18F-fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int 2012;110:1666–71.

    Google Scholar 

  220. Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labelled choline derivatives. Urol Oncol 2013;31:427–35.

    Google Scholar 

  221. Graziani T, et al. 11C-choline PET/CT for restaging prostate cancer. Results form 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging 2016;43:1971–79.

    Google Scholar 

  222. Beheshti M, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 2010;12:98–107.

    Google Scholar 

  223. Kjolhede H, et al. Combined 18F-fluorocholine and 18F-fluoride positron emission tomography/computed tomography imaging for staging of high-risk prostate cancer. BJU Int. 2012;110:1501–6.

    Article  PubMed  Google Scholar 

  224. Picchio M, et al. 11C-choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging 2012;39:13–26.

    Google Scholar 

  225. Langsteger W, et al. Imaging of bone metastases in prostate cancer: an update. Q J Nucl Med Mol Imaging 2012;56:447–58.

    Google Scholar 

  226. von Eyben FE, Kairemo K. Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun. 2014;35:221–30.

    Article  CAS  Google Scholar 

  227. Fuccio C, et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol. 2012;81:893–6.

    Article  Google Scholar 

  228. Ceci F, et al. 11C-choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clin Nucl Med 2015;40:265–70.

    Google Scholar 

  229. Wahl RL, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009;50:122S–50.

    Google Scholar 

  230. Kwee SA, et al. Prognosis related to metastatic burden measured by 18F-fluorocholine PET/CT in castration resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2014;55:905–10.

    CAS  Google Scholar 

  231. Oprea-Lager DE, et al. Repeatability of quantitative 18F-fluoromethylcholine PET/CT studies in prostate cancer. J Nucl Med. 2016;57:721–7.

    Article  CAS  PubMed  Google Scholar 

  232. Sweat SD, et al. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.

    Article  CAS  PubMed  Google Scholar 

  233. Silver DA, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  234. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91(3):528–39.

    Google Scholar 

  235. Yao V, et al. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate. 2010;70:305–16.

    Article  CAS  PubMed  Google Scholar 

  236. Birtle AJ, et al. Tumour markers for managing men who present with metastatic prostate cancer and serum prostate-specific antigen levels of <10 ng/mL. BJU Int. 2005;96:303–7.

    Article  PubMed  Google Scholar 

  237. Werner RA, et al. 18F-Labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging. Theranostics 2020;10:1–16.

    Google Scholar 

  238. Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med 1998;23:672–7.

    Google Scholar 

  239. Manyak MJ. Indium 111 capromab pendetide in the management of recurrent prostate cancer. Exp Rev Anticancer Ther. 2008;18:175–81.

    Article  Google Scholar 

  240. Sodee DB, et al. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. The ProstaScint Imaging Centers. Urology. 2000;56:988–93.

    Article  CAS  PubMed  Google Scholar 

  241. Tagawa ST, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pandit-Taskar N, O’Donoghue JA, Durack JC. A phase I/II sudy for analytical validation of 89Zr-J591 ImmunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res. 2015;21:5277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Eder M, et al. PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging. 2013;40:819–23.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Goffin KE, et al. Phase 2 Study of 99mTc-Trofolastat SPECT/CT to identify and localize prostate cancer in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic LN dissection. J Nucl Med. 2017;58:1408–13.

    Article  CAS  PubMed  Google Scholar 

  245. Kozikowski AP, et al. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J Med Chem. 2001;44:298–301.

    Article  CAS  PubMed  Google Scholar 

  246. Eder M, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 2012;23:688–97.

    Google Scholar 

  247. Afshar-Oromieh A, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95. Erratum in: Eur J Nucl Med Mol Imaging. 2013;40:797–8.

    Article  CAS  PubMed  Google Scholar 

  248. Carlucci G et al. 68Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med 2021;62:149–55.

    Google Scholar 

  249. https://www.edqm.eu/sites/default/files/01_schedule_2019_portrait.pdf

  250. https://www.edqm.eu

  251. EAU Guidelines. Edn. Presented at the EAU Annual Congress Barcelona 2019. ISBN 978-94-92671-04-2.

    Google Scholar 

  252. Parker C, et al. ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:1119–34.

    Article  CAS  PubMed  Google Scholar 

  253. Fendler WP, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging – Version 1.0. Eur J Nucl Med Mol Imaging 2017;44:1014–24.

    Google Scholar 

  254. Maurer T, et al. Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195:1436–43.

    Article  PubMed  Google Scholar 

  255. Hofman MS, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy. Lancet. 2020;395:1208–16.

    Article  CAS  PubMed  Google Scholar 

  256. https://clinicaltrials.gov/ct2/show/NCT02919111

  257. Hope TA, et al. Metaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology. J Nucl Med. 2019;60:786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Luiting HB, et al. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int. 2020;125:206–14.

    Article  CAS  PubMed  Google Scholar 

  259. Klingenberg S, et al. 68Ga-PSMA PET/CT for primary lymph node and distant metastasis NM staging of high-risk prostate cancer. J Nucl Med 2021;62:214–20.

    Google Scholar 

  260. Albertsen PC, et al. Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst. 2005;97:1248–53.

    Article  PubMed  Google Scholar 

  261. Zettinig O, et al. Multimodal image-guided prostate fusion biopsy based on automatic deformable registration. Int J Comput Assist Surg. 2015;10:1997–2007.

    Article  Google Scholar 

  262. Fendler WP, et al. 68Ga-PSMA-HBED-CC PET/CT detects location and extent of primary prostate cancer. J Nucl Med 2016;57:1720–5.

    Google Scholar 

  263. Satapathy S, et al. Diagnostic Accuracy of 68Ga-PSMA PET/CT for initial detection in patients with suspected prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol. 2021;216:599–607.

    Article  PubMed  Google Scholar 

  264. Gallium-68 PSMA-11 PET in patients with biochemical recurrence [completed 2017:NCT02918357]. https://clinicaltrials.gov/ct2/show/NCT02918357

  265. Perera M, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77:403–17.

    Article  PubMed  Google Scholar 

  266. Oehus AK, et al. Efficacy of PSMA ligand PET-based radiotherapy for recurrent prostate cancer after radical prostatectomy and salvage radiotherapy. BMC Cancer. 2020;20:362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Kishan AU, Nickols NG, Spratt DE. Prostate-specific membrane antigen positron emission tomography-guided radiotherapy. Eur Urol Focus. 2020 Oct 10. Epub ahead of print.

    Google Scholar 

  268. Afshar-Oromieh A, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2013;41:11–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Fossati N, et al. Underestimation of positron emission tomography/computerized tomography in assessing tumor burden in prostate cancer nodal recurrence: head-to-head comparison of 68Ga-PSMA and 11C-choline in a large, multi-institutional series of extended salvage lymph node dissections. J Urol. 2020;204:296–302.

    Article  PubMed  Google Scholar 

  270. Jilg CA, et al. detection rate of 18F-choline PET/CT and 68Ga-PSMA-HBED-CC PET/CT for prostate cancer lymph node metastases with direct link from PET to histopathology: dependence on the size of tumor deposits in lymph nodes. J Nucl Med. 2019;60:971–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhou J, et al. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Skelet Radiol. 2019;48:1915–24.

    Article  Google Scholar 

  272. Giesel FL, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.

    Article  CAS  PubMed  Google Scholar 

  273. Giesel FL, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med. 2019;60:362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Rahbar K, et al. Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45:2055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Witkowska-Patena E, et al. Diagnostic performance of 18F-PSMA-1007 PET/CT in biochemically relapsed patients with prostate cancer with PSA levels ≤ 2.0 ng/ml. Prostate Cancer Prostatic Dis. 2020;23:343–8.

    Article  CAS  PubMed  Google Scholar 

  276. Kuten J, et al. Head-to-head comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in staging prostate cancer using histopathology and immunohistochemical analysis as a reference standard. J Nucl Med. 2020;61:527–32.

    Article  CAS  PubMed  Google Scholar 

  277. Rauscher I, et al. Matched-pair comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J Nucl Med. 2020;61:51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Pouliot F, et al. A prospective phase II/III multicenter study of PSMA-targeted 18F-DCFPyL PET/CT imaging in patients with prostate cancer (OSPREY): a sub-analysis of regional and distant metastases detection rates at initial staging by 18F-DCFPyL PET/CT. J Clin Oncol. 2020;38(Suppl 6):9–9.

    Article  Google Scholar 

  279. Rischpler C, et al. 68Ga-PSMA-HBED-CC uptake in cervical, coeliac and sacral ganglia as an important pitfall in prostate cancer PET imaging. J Nucl Med 2018;59:1406–11.

    Google Scholar 

  280. Ferraro DA, et al. Immunohistochemical PSMA expression patterns of primary prostate cancer tissue are associated with the detection rate of biochemical recurrence with 68Ga-PSMA-11-PET. Theranostics. 2020;10:6082–94.

    Google Scholar 

  281. Bois F, et al. [68Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020;10:349–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Foley RW, et al. Fluorine-18 labelled prostate-specific membrane antigen (PSMA)-1007 positron-emission tomography-computed tomography: normal patterns, pearls, and pitfalls. Clin Radiol. 2020;75:903–13.

    Article  CAS  PubMed  Google Scholar 

  283. Eiber M, et al. Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469–78.

    Article  PubMed  Google Scholar 

  284. Rowe SP, et al. Proposal for a structured reporting system for prostate-specific membrane antigen-targeted PET imaging: PSMA-RADS version 1.0. J Nucl Med. 2018;59:479–85.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Kratochwil C, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;46:2536–44.

    Article  PubMed  Google Scholar 

  286. von Eyben FE, et al. Optimizing PSMA radioligand therapy for patients with metastatic castration-resistant prostate cancer. A systematic review and meta-analysis. Int J Mol Sci. 2020;21:9054.

    Article  CAS  Google Scholar 

  287. Sartor AO, Morris MJ, Krause BJ. VISION: An international, prospective, open-label, multicenter, randomized phase 3 study of 177Lu-PSMA-617 in the treatment of patients with progressive PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37(Suppl 15):TPS5099.

    Article  Google Scholar 

  288. Okudaira H, et al. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med. 2011;52:822–9.

    Article  CAS  PubMed  Google Scholar 

  289. Sakata T, et al. L-type amino-acid transporter 1 as a novel biomarker for high-grade malignancy in prostate cancer. Pathol Int. 2009;59:7–18.

    Article  CAS  PubMed  Google Scholar 

  290. Segawa A, et al. L-type amino acid transporter 1 expression is highly correlated with Gleason score in prostate cancer. Mol Clin Oncol. 2013;1:274–80.

    Article  PubMed  Google Scholar 

  291. Savir-Baruch B, Zanoni L, Schuster DM. Imaging of prostate cancer using fluciclovine. Urol Clin North Am. 2018;45:489–502.

    Article  PubMed  Google Scholar 

  292. Gusman M, et al. Review of 18F-Fluciclovine PET for detection of recurrent prostate cancer. Radiographics. 2019;39:822–41.

    Article  PubMed  Google Scholar 

  293. Nanni C, et al. [18F]Fluciclovine PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging – Version 1.0. Eur J Nucl Med Mol Imaging. 2020;47:579–91.

    Article  PubMed  Google Scholar 

  294. McParland BJ, Wall A, Johansson S, Sorensen J. The clinical safety, biodistribution nad internal radiation dosimetry of [18F]fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2013;40:1256–64.

    Article  CAS  PubMed  Google Scholar 

  295. Hays MT, et al. MIRD dose estimate report no. 19: radiation absorbed dose estimates from 18F-FDG. J Nucl Med. 2002;43:210–4.

    CAS  PubMed  Google Scholar 

  296. Parent EE, Schuster DM. Update on 18F-Fluciclovine PET for prostate cancer imaging. J Nucl Med. 2018;59:733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Schuster DM, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulates disease. J Nucl Med. 2014;55:1986–92.

    Article  CAS  PubMed  Google Scholar 

  298. Kim S-J, Lee SW. The role of 18F-fluciclovine PET in the management of prostate cancer: a systematic review and meta-analysis. Clin Radiol. 2019;74:886–92.

    Article  PubMed  Google Scholar 

  299. Jambor I, et al. Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial). Eur J Nucl Med Mol Imaging. 2018;45:355–64.

    Article  PubMed  Google Scholar 

  300. Hoekstra RJ, et al. Diagnostic accuracy of 18F-fluciclovine PET/CT in primary lymph node staging of prostate cancer. Nucl Med Commun 2020 Dec 14. Online ahead of print.

    Google Scholar 

  301. Suzuki H, et al. Diagnostic performance of 18F-fluciclovine PET/CT for regional lymph node metastases in patients with primary prostate cancer: a multicenter phase II clinical trial. Jpn J Clin Oncol. 2019;49:803–11.

    Article  PubMed  Google Scholar 

  302. Alemozaffar M, et al. [18F]fluciclovine positron emission tomography/computerized tomography for preoperative staging in patients with intermediate to high risk primary prostate cancer. J Urol. 2020;204:734–40.

    Article  PubMed  PubMed Central  Google Scholar 

  303. Selnæs KM, et al. 18F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients. Eur Radiol 2018;28:3151–9.

    Google Scholar 

  304. Akin-Akintayo OO, et al. Change in salvage radiotherapy management based on guidance with FACBC (fluciclovine) PET/CT in postprostatectomy recurrent prostate cancer. Clin Nucl Med 2017;42:e22–8.

    Google Scholar 

  305. Savir-Baruch B, et al. Fluorine-18-labeled fluciclovine PET/CT in clinical practice: factors affecting the rate of detection of recurrent prostate cancer. AJR Am J Roentgenol. 2019;213:851–8.

    Article  PubMed  Google Scholar 

  306. Armstrong JM, et al. 18F-fluciclovine PET CT detection of biochemical recurrent prostate cancer at specific PSA thresholds after definitive treatment. Urol Oncol 2020;38:636.e1–6.

    Google Scholar 

  307. Bach-Gansmo T, et al. Multisite experience of the safety, detection rate and diagnostic performance of [18F]Fluciclovine positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol 2017;197:676–83.

    Google Scholar 

  308. Akin-Akintayo O, et al. Prospective evaluation of fluciclovine (18F) PET-CT and MRI in detection of recurrent prostate cancer in non-prostatectomy patients. Eur J Radiol. 2018;102:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  309. Teyateeti A, et al. Diagnostic performance of F-18 fluciclovine PET/CT in post-radical prostatectomy prostate cancer patients with rising prostate-specific antigen level ≤0.5 ng/ml. Nucl Med Commun. 2020;41:906–15.

    Article  CAS  PubMed  Google Scholar 

  310. Teyateeti A, et al. Is there any role for 18F-fluciclovine PET/CT in the presence of undectectable PSA in prostate cancer patients after definitive treatment? Clin Nucl Med. 2020;45:672–8.

    Article  PubMed  Google Scholar 

  311. England JR, et al. 18F-fluciclovine PET/CT detection of recurrent prostate carcinoma in patients with serum PSA ≤1 ng/ml after definitive primary treatment. Clin Nucl Med 2019;44:e128–32.

    Google Scholar 

  312. Nanni C, et al. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 2016;43:1601–1610.

    Google Scholar 

  313. Calais J, et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol 2019;20:1286–94.

    Google Scholar 

  314. Chen B, et al. Comparison of 18F-fluciclovine PET/CT and 99mTc-MDP bone scan in detection of bone metastasis in prostate cancer. Nucl Med Commun 2019;40:940–6.

    Google Scholar 

  315. Chau A, et al. Diagnostic performance of 18F-fluciclovine in detection of prostate cancer bone metastases. Clin Nucl Med. 2018;43:e226–31.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Mottet N, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71:618–29.

    Article  PubMed  Google Scholar 

  317. Cornford P, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71:630–42.

    Article  PubMed  Google Scholar 

  318. Andriole GL, et al. The impact of positron emission tomography with 18F-fluciclovine on the treatment of biochemical recurrence of prostate cancer: results from the LOCATE trial. J Urol. 2019;201:322–31.

    Article  PubMed  PubMed Central  Google Scholar 

  319. Teoh EJ, et al. The FALCON trial: impact of 18F-fluciclovine PET/CT on clinical management choices for men with biochemically recurrent prostate cancer. J Clin Oncol. 2018;36:165.

    Article  Google Scholar 

  320. Dreyfuss AD, et al. 18F-fluciclovine PET/CT in therapeutic decision making for prostate cancer. Clin Nucl Med 2021;46:187–94.

    Google Scholar 

  321. Macheda ML, Rogers S, Bets JD. Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J Cell Physiol 2005;202:654–62.

    Google Scholar 

  322. Effert P, et al. Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. Anticancer Res. 2004;24:3057–63.

    CAS  PubMed  Google Scholar 

  323. Kukuk D, et al. Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models. J Nucl Med. 2011;52:1654–6.

    Article  CAS  PubMed  Google Scholar 

  324. Jadvar H, Ye W, Groshen S. 18F-fluorodeoxyglucose PET-CT of the normal prostate gland. Ann Nucl Med 1998;22:787–93.

    Google Scholar 

  325. Jadvar H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging 2013;40:S5–10.

    Google Scholar 

  326. Liu IJ, et al. Fluorodeoxyglucose PET studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11.

    Article  CAS  PubMed  Google Scholar 

  327. Kao PF, Chou YH, Iai CW. Diffuse FDG uptake in acute prostatitis. Clin Nucl Med. 2008;33:308–10.

    Article  PubMed  Google Scholar 

  328. Oyama N, et al. The increased accumulation of 18F-fluoredeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol. 1999;29:623–9.

    Article  CAS  PubMed  Google Scholar 

  329. Morris NJ, et al. Fluorinated deoxyglucose PET imaging in progressive metastatic prostate cancer. Urology. 2002;59:913–8.

    Article  PubMed  Google Scholar 

  330. Jadvar H, Pinski J, Conti P. FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep. 2003;10:1485–8.

    PubMed  Google Scholar 

  331. Chang CH, et al. Detecting metastatic pelvic lymph nodes by 18F-2 deoxyglucose positron tomography in patients with PSA relapse after treatment with localized prostate cancer. Urol Int. 2003;70:311–5.

    Article  PubMed  Google Scholar 

  332. Schoder H, et al. 18F Fluorodeoxyglucose positron emission tomography for detection of disease in patients with PSA relapse after radical prostatectomy. Clin Cancer Res 2005;11:4761–9.

    Google Scholar 

  333. Zhang Y, et al. Longitudinally quantitative 2-deoxy-2-[18F]fluoro-d-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol 2006;8:300–8.

    Google Scholar 

  334. Zukotynski KA, et al. 18FF-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging 2014;5:72–82.

    Google Scholar 

  335. Courtney KD, et al. A phase I study of everolimus and docetaxel in patients with castration-resistant prostate cancer. Clin Genitourin Cancer 2015;13:113–23.

    Google Scholar 

  336. Yu EY, et al. C-11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36:192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Morris MJ, et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res. 2005;11:3210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Meirelles GS, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Vargas HA, et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology. 2014;271:220–9.

    Article  PubMed  Google Scholar 

  340. Jadvar H, et al. Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J Nucl Med. 2013;54:1195–2001.

    Article  CAS  PubMed  Google Scholar 

  341. Jadvar H, Groshen SG, Quinn DI. Association of overall survival with glycolytic activity of castrate-resistant prostate cancer metastases. Radiology. 2015;274:624–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Evangelista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Evangelista, L. et al. (2022). Diagnostic Applications of Nuclear Medicine: Prostatic Cancer. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_43-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_43-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Prostatic Cancer
    Published:
    03 August 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_43-3

  2. Diagnostic Applications of Nuclear Medicine: Prostatic Cancer
    Published:
    29 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_43-2

  3. Original

    Diagnostic Applications of Nuclear Medicine: Prostatic Cancer
    Published:
    03 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_43-1