Diagnostic Applications of Nuclear Medicine: Prostatic Cancer

  • Emilio Bombardieri
  • Maria Grazia Sauta
  • Lucia Setti
  • Roberta Meroni
  • Gianluigi Ciocia
  • Laura Evangelista
Living reference work entry

Abstract

Prostate cancer (PCa) is one of the most common cancers in the male population. Its incidence, mortality, and prevalence are different across different geographical areas, depending on the different approaches adopted for screening, early diagnosis, and availability of treatments. Digital rectal exploration (DRE) and the prostate-specific antigen (PSA) test are the most common clinical practice used for PCa screening.

The choice of treatment should be patient specific and risk adjusted. The therapeutic approaches for patients with PCa include different options: watchful waiting, radical prostatectomy, radiotherapy, hormone therapy, chemotherapy, immunotherapy, and treatment of bone metastases.

Keywords

Prostate cancer Diagnostic imaging Bone scan SPECT/CT PET/CT Biomarkers for prostate cancer 

Glossary

[11C]CHO

[11C]choline

[18F]FDG

2-Deoxy-2-[18F]fluoro-d-glucose

[18F]FDHT

16β-[18F]fluoro-5-dihydrotestosterone

18F-CHO

18F-fluoromethylcholine

18F-DCFBC

N-[N-{(S)-1,3-dicarboxypropyl]carbamoyl}4-18F-fluorobenzyl-L-cysteine

18F-DCFPyLis

2-[3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentil}-ureido]-pentanedioic acid

18F-FACBC

Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid, or 18F-fluciclovine

18F-NaF

18F-sodium fluoride

3D CRT

Three-dimensional conformal radiotherapy

68Ga-PSMA

Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)]

99mTc-HMDP

99mTc-hydroxymethylene diphosphonate

99mTc-MDP

99mTc-methylene diphosphonate

ACP

American College of Physicians

ACS

American Cancer Society

ADT

Androgen deprivation therapy

AJCC

American Joint Committee on Cancer

ALP

Alkaline phosphatase

AS

Active surveillance

ASCO

American Society of Clinical Oncology

AUA

American Urological Association

BS

Bone scintigraphy

BSI

Bone scan index

CRPC

Castrate-resistant prostate cancer

CT

X-ray computed tomography

CTX

C-terminal telopeptide of type I collagen

CYP17

17-Alpha-monooxygenase, a crucial enzyme for the synthesis of testosterone from non-gonadal sources

DCE MRI

Dynamic contrast-enhanced magnetic resonance imaging

DRE

Digital rectal exploration

DWI

Diffusion-weighted imaging, an MR imaging technique

EBRT

External beam radiation therapy

ED

Effective dose

EMA

European Medicines Agency

ERG

ETS-related gene

ETS

E26 transformation-specific family

FDA

United States Food and Drug Administration

GLUT

Glucose transporter family

GS

Gleason score

HDR

High-dose rate radiotherapy

HIFU

High-intensity focused ultrasound

ICTP

Cross-linked carboxyterminal telopeptide of type I collagen

IGRT

Image-guided radiotherapy

IMRT

Intensity-modulated radiotherapy

LDR

Low-dose rate radiotherapy

LH

Luteinizing hormone

LHRH

Luteinizing hormone-releasing hormone

M

Metastasis status according to the AJCC/UICC TNM staging system

MR

Magnetic resonance

MRI

Magnetic resonance imaging

N

Lymph node status according to the AJCC/UICC TNM staging system

NCCN

National Comprehensive Cancer Network

NCCN

National Comprehensive Cancer Network

NOPR

United States National Oncologic PET Registry

NPV

Negative predictive value

p53

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PCa

Prostate cancer

PERCIST

Positron emission tomography response criteria in solid tumors

PET

Positron emission tomography

PET/CT

Positron emission tomography/computed tomography

PET/MR

Positron emission tomography/magnetic resonance

PET/MRI

Positron emission tomography/magnetic resonance imaging

PINP

Amino-terminal procollagen propeptide type I

PPV

Positive predictive value

PSA

Prostate-specific antigen

PSA

Prostate-specific antigen

PSMA

Prostate-specific membrane antigen

RANK

Receptor activator of nuclear factor kappa-B

RANKL

Receptor activator of nuclear factor kappa-B ligand, also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiation factor (ODF)

RARP

Robot-assisted radical prostatectomy

RECIST

Response evaluation criteria in solid tumors

ROC

Receiver operating characteristic, a statistical analysis to assess the performance of a binary classifier

RT

Radiotherapy

SNMMI

Society of Nuclear Medicine and Molecular Imaging

SPECT

Single photon emission computed tomography

SPECT/CT

Single photon emission computed tomography/computed tomography

SRE

Skeletal related event

SUV

Standardized uptake value

SUVmax

Standardized uptake value at point of maximum

T

Tumor status according to the AJCC/UICC TNM staging system

TMPRSS2

Transmembrane protease, serine 2

TNM

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status) and “M” (distant metastasis status)

TRUS

Transrectal ultrasound

UICC

Union Internationale Contre le Cancer (International Union Against Cancer)

US

Ultrasonography

USPSTF

United States Preventive Services Task Force

WB

Whole body

WBS

Whole-body scan

Notes

Aknowledgments

The authors are grateful to Dr. Thomas A. Hope, Department of Radiology and Biomedical Imaging, University of California (USA), for his scientific contribution and to Ms. Annaluisa De Simone Sorrentin for her kind editorial assistance.

References

  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC cancer base No. 11 [internet]. Lyon: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr. Last accessed on 12 June 2016.Google Scholar
  2. 2.
    Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD. Cancer statistics. CA Cancer J Clin. 2016;66:7–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Aly M, Wiklund F, Xu J, et al. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur Urol. 2011;60:21–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Iwasaki M, Mameri CP, Hamada GS, Tsugane S. Secular trends in cancer mortality among Japanese immigrants in the state of São Paulo, Brazil, 1979–2001. Eur J Cancer Prev. 2008;17:1–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Couto E, Boffetta P, Lagiou P, et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br J Cancer. 2011;104:1493–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fine SW, Al-Ahmadie HA, Gopalan A, et al. Anatomy of the anterior prostate and extraprostatic space: a contemporary surgical pathology analysis. Adv Anat Pathol. 2007;14:401–7.PubMedCrossRefGoogle Scholar
  8. 8.
    NCCN National Comprehensive Cancer Network. Clinical practice guidelines in oncology version 2.2016 staging prostate cancer. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Last accessed on 27 Feb 2016.
  9. 9.
    Wolf AM, Wender RC, Etzioni RB, et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin. 2010;60:70–98.PubMedCrossRefGoogle Scholar
  10. 10.
    Hammerer PG, Kattan MW, Mottet N, Prayer-Galetti T. Using prostate-specific antigen screening and nomograms to asses risk and predict outcomes in the management of prostate cancer. BIU Int. 2006;98:11–9.Google Scholar
  11. 11.
    Boczko J, Messing E, Dogra V. Transrectal sonography in prostate evaluation. Radiol Clin N Am. 2006;44:679–87.PubMedCrossRefGoogle Scholar
  12. 12.
    Djavan B, Waldert M, Zlotta A, et al. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: results of a prospective European prostate cancer detection study. J Urol. 2001;166:856–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Yacoub JH, Oto A, Miller FH. MR imaging of the prostate. In: Miller FH, editor. Adult body MR. Pennsylvania: Elsevier; 2014. p. 811–37.Google Scholar
  14. 14.
    Epstein JI, Algaba F, Allsbrook WC Jr, et al. Acinar adenocarcinoma. In: Eble JN, Sauter G, Epstein JI, editors. WHO classification of tumors, pathology & genetics. Tumors of the urinary system and male genital organs. Lyon: IARC Press; 2004. pp. 162–98.Google Scholar
  15. 15.
    Epstein JI, Allsbrook Jr WC, Amin MB, Egevad LL, ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005;29:1228–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Schroder FH. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur Urol. 2008;53:1129–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Ramsay AK, Leung HY. Signalling pathways in prostate carcinogenesis: potentials for molecular-targeted therapy. Clin Sci (Lond). 2009;117:209–28.CrossRefGoogle Scholar
  18. 18.
    Klocker H, Culig Z, Eder IE, et al. Mechanism of androgen receptor activation and possible implications for chemoprevention trials. Eur Urol. 1999;35:413–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Heidenreich A, Aus G, Bolla M, et al. EAU guidelines on prostate cancer. Eur Urol. 2008;53:68–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Sood A, Jeong W, Dalela D, et al. Role of robot-assisted radical prostatectomy in the management of high-risk prostate cancer. Indian J Urol. 2014;30:410–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    AJCC cancer staging manual. 7th ed. Part IX: genitourinary sites. New York: Springer; 2010. p. 445–78.Google Scholar
  22. 22.
    Klein EA, Ciezki JP, Vogelzang N, Lee WR, Richie JP. Initial approach to low- and very low risk clinically localized prostate cancer. UpToDate www.uptodate.com. 2016.
  23. 23.
    Thompson I, Thrasher JB, Aus G, et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J Urol. 2007;177:2106.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen RC, Rumble RB, Loblaw DA, et al. Active surveillance for the management of localized prostate cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J Clin Oncol. 2016;34:2182–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Catalona WJ, Bigg SW. Nerve-sparing radical prostatectomy: evaluation of results after 250 patients. J Urol. 1990;143:538–43.PubMedGoogle Scholar
  26. 26.
    Corral DA, Bahnson RR. Survival of men with clinically localized prostate cancer detected in the eighth decade of life. J Urol. 1994;151:1326–9.PubMedGoogle Scholar
  27. 27.
    Zincke H, Bergstralh EJ, Blute ML, et al. Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol. 1994;12:2254–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Ko WJ, Hruby GW, Turk AT, Landman J, Badani KK. Pathological confirmation of nerve-sparing types performed during robot assisted radical prostatectomy. BJU. 2013;111:451–8.CrossRefGoogle Scholar
  29. 29.
    Montorsi F, Wilson TG, Rosen RC, et al. Best practice in robot-assisted radical prostatectomy: recommendations of the Pasadena Consensus Panel. Eur Urol. 2012;62:368–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Carter SC, Shih YC, Hu JC. Robotic and standard open radical prostatectomy: oncological and quality-of-life outcomes. J Comp Eff Res. 2013;2:293–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Dal Pra A, Souhami L. Prostate cancer radiation therapy: a physicians perspective. Phys Med. 2016;32:438–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Latorzeff I, Mazurier J, Boutry C, et al. Benefit of intensity modulated and image-guided radiotherapy in prostate cancer. Cancer Radiother. 2010;14:479–87.PubMedCrossRefGoogle Scholar
  33. 33.
    Kupelian P, Kuban D, Thames H, et al. Improved biochemical relapse free survival with increased external radiation doses in patients with localized prostate cancer: the combined experience of nine institutions in patients treatment in 1994 and 1995. Int J Radiat Oncol Biol Phys. 2005;61:415–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Pasquir D, Ballereau C. Adjuvant and salvage radiotherapy after prostatectomy for prostate cancer: a literature review. Int J Radiat Oncol Biol Phys. 2008;72:972–9.CrossRefGoogle Scholar
  35. 35.
    Bottke D, Wiegel T. Adjuvant radiotherapy after radical prostatectomy; indications results and side effects. Urol Int. 2007;78:193–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Dulaney CR, Osula DO, Yang ES, Rais B. Prostate radiotherapy in the era of advanced imaging and precision medicine. Prostate Cancer. 2016;2016:48917515. doi:10.1155/2016/4897515. Epub 2016 Feb 16.CrossRefGoogle Scholar
  37. 37.
    Batterman JJ. Permanent prostate brachytherapy. In: Bolla M, van Poppel H, editors. Management of prostate cancer. Berlin: Springer; 2012. p. 113–28.CrossRefGoogle Scholar
  38. 38.
    Bossi A, Verstaet R, Clamels L, Blanchard P. High-rate-dose-brachytherapy indications techniques and results. In: Bolla M, van Poppel H, editors. Management of prostate cancer. Berlin: Springer; 2012. p. 129–42.CrossRefGoogle Scholar
  39. 39.
    Matchens S, Baumann R, Agemann G, et al. Long term results interstitial radiotherapy (LDR brachytherapy) in the treatment of patients with prostate cancer. World J Urol. 2006;24:289–95.CrossRefGoogle Scholar
  40. 40.
    Tsivian M, Polascick TJ. Cryotherapy in management of prostate cancer. In: Bolla M, van Poppel H, editors. Management of prostate cancer. Berlin: Springer; 2012. p. 213–23.CrossRefGoogle Scholar
  41. 41.
    Gelet A, Crouzet S, Rouviere O, Chapelon JY. High-Intensity Focused Ultrasound (HIFU) for prostate cancer. In: Bolla M, van Poppel H, editors. Management of prostate cancer. Berlin: Springer; 2012. p. 191–212.CrossRefGoogle Scholar
  42. 42.
    Reznikov A. Hormonal impact on tumor growth and progression. Exp Oncol. 2015;37:162–72.PubMedGoogle Scholar
  43. 43.
    Lee RJ, Smith MR. Hormone therapy for prostate cancer. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy: principles and practice. 5th ed. Wolters Kluwer: Lippincott Williams & Wilkins; 2011.Google Scholar
  44. 44.
    Van den Berg RC, Van Casteren NJ, Van den Broek T, et al. Role of hormonal treatment in cancer patients with non metastatic disease recurrence after local curative treatment. A systematic review. Eur Urol. 2016;69:802–20.CrossRefGoogle Scholar
  45. 45.
    Heidenreich A, Bastina PJ, Bellmunt J, et al. EAU guidelines on prostate cancer part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65:467–79.Google Scholar
  46. 46.
    Thomas C, Bogemann M, Konig F, et al. Advanced prostate cancer consensus conference (APCCC) 2015 in St. Gallen: critical review of recommendations on diagnosis and therapy of metastatic prostate cancer by a German expert panel. Urol A. 2016;55:772–82.CrossRefGoogle Scholar
  47. 47.
    Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, et al. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol. 2012;348:411–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Gioeli DG. The promise of novel androgen receptor antagonist. Cell Cycle. 2010;9:440–1.PubMedCrossRefGoogle Scholar
  49. 49.
    Attard G, Reid AH, A’Hern R, et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol. 2009;27:3742–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Beer TM, Armstrong AJ, Rathkopf DE, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12.PubMedCrossRefGoogle Scholar
  53. 53.
    van Soest RJ, Nieuweboer AJ, de Morree ES, et al. The influence of prior novel androgen receptor targeted therapy on the efficacy of cabazitaxel in men with metastatic castration-resistant prostate cancer. Eur J Cancer. 2015;51:2562–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Kantoff PW, Schuetz TJ, Blumenstein BA, et al. Overall survival analysis of a phase II randomized controlled trial a Poxviral based PSA-target immunotherapy in metastatic castraction-resistant prostate cancer. J Clin Oncol. 2010;28:1099–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    van den Eertwegh AJ, Versluis J, van den Berg HP, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castraction-resistant prostate cancer: a phase I dose-escalation trial. Lancet Oncol. 2012;13:509–17.PubMedCrossRefGoogle Scholar
  57. 57.
    Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Quinn DI, Shore ND, Egawa S, et al. Immunotherapy for castration-resistant prostate cancer: progress and new paradigms. Urol Oncol. 2015;33:245–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Slovin SF, Higano CS, Hamid O, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24:1813–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Saad F, McKiernan J, Eastham J. Rationale for zoledronic acid therapy in men with hormone-sensitive prostate cancer with or without bone metastasis. Urol Oncol. 2006;24:4–12.PubMedCrossRefGoogle Scholar
  61. 61.
    James MD, Sydes MR, Mason MD. Docetaxel (DOC) +/− zoledronic acid for hormone –naive prostate cancer: first available results from STAMPEDE and treatment effects within subgroups (NCT00268476). Eur J Cancer. 2015;51:S719.CrossRefGoogle Scholar
  62. 62.
    Sartor O, Coleman R, Nilsson S, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15:738–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Parker C, Gillessen S, Heidenreich A, Committee EG, et al. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:69–77.CrossRefGoogle Scholar
  65. 65.
    Chow E, Harris K, Fan G, Tsao M, Sze WM. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol. 2007;25:1423–36.PubMedCrossRefGoogle Scholar
  66. 66.
    Lutz S, Berk L, Chang E, et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;79:965–76.PubMedCrossRefGoogle Scholar
  67. 67.
    Fairchild A, Barnes E, Ghosh S, et al. International patterns of practice in palliative radiotherapy for painful bone metastases: evidence-based practice? Int J Radiat Oncol Biol Phys. 2009;75:1501–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Sandblom G, Ladjevardi S, Garmo H, Varenhorst E. The impact of prostate-specific antigen level at diagnosis on the relative survival of 28,531 men with localized carcinoma of the prostate. Cancer. 2008;112:813–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Roehrborn CG, McConnell J, Bonilla J, et al. Serum prostate specific antigen is a strong predictor of future prostate growth in men with benign prostatic hyperplasia. PROSCAR long-term efficacy and safety study. J Urol. 2000;163:13–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Yang Z, Yu L, Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res. 2016;28:65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Freedland SJ, Moul JW. Prostate specific antigen recurrence after definitive therapy. J Urol. 2007;177:1985–91.PubMedCrossRefGoogle Scholar
  72. 72.
    Briganti A, Suardi N, Gallina A, et al. Predicting the risk of bone metastasis in prostate cancer. Cancer Treat Rev. 2014;40:3–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Onukwugha E, Yong C, Mullins CD, et al. Skeletal-related events and mortality among older men with advanced prostate cancer. J Geriatr Oncol. 2014;5:281–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Costa L, Demers LM, Gouveia-Oliveira A, et al. Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol. 2002;20:850–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Koizumi M, Yonese J, Fukui I, Ogata E. The serum level of the amino-terminal propeptide of type I procollagen is a sensitive marker for prostate cancer metastasis to bone. BJU Int. 2001;87:348–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Koopmans N, de Jong IJ, Breeuwsma AJ, van der Veer E. Serum bone turnover markers (PINP and ICTP) for the early detection of bone metastases in patients with prostate cancer: a longitudinal approach. J Urol. 2007;178:849–53.PubMedCrossRefGoogle Scholar
  77. 77.
    Zafeirakis AG, Papatheodorou GA, Limouris GS. Clinical and imaging correlations of bone turnover markers in prostate cancer patients with bone only metastases. Nucl Med Commun. 2010;31:249–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Coleman RE, Major P, Lipton A, et al. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol. 2005;23:4925–35.PubMedCrossRefGoogle Scholar
  79. 79.
    Cook RJ, Coleman R, Brown J, et al. Markers of bone metabolism and survival in men with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2006;12(11 Pt 1):3361–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Smith MR, Cook RJ, Coleman R, et al. Predictors of skeletal complications in men with hormone-refractory metastatic prostate cancer. Urology. 2007;70:315–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gomella LG, El Gabry EA, Strup S, et al. Ultrasound contrast agent for prostate imaging and biopsy. Urol Oncol. 2001;6:189–92.CrossRefGoogle Scholar
  82. 82.
    Morelli G, Pagni R, Mariani C. Results of vardenafil mediated power Doppler ultrasound contrast enhanced ultrasounds and systematic random biopsies to detect prostate cancer. J Urol. 2011;185:2126–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Wink M, Frauscher F, Cosgrove D, et al. Contrast enhanced ultrasound and prostate cancer a multicenter European research coordination project. Eur Urol. 2008;54:982–93.PubMedCrossRefGoogle Scholar
  84. 84.
    Taneja SS. Imaging in the diagnosis and management of prostate cancer. Rev Urol. 2004;6:101–3.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Dickinson L, Ahmed HU, Allen C, et al. Clinical application of multiparametric MRI within the prostate cancer diagnostic pathway. Urol Oncol. 2013;31:281–4.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Guneyli S, Erdem CZ, Erdem L. Magnetic resonance imaging in prostate cancer. Clin Imaging. 2016;40:601–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Presti JC. Repeat prostate biopsy. When, where and how. Urol Oncol. 2009;27:312–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Hambrock T, Somford DM, Hoeks C. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Pasougly V, Michoux N, Peeters F, et al. Whole body 3D T1 weighted MR imaging in patients with prostate cancer. Feasibility and evaluation in screening for metastatic disease. Radiology. 2015;275:155–66.CrossRefGoogle Scholar
  90. 90.
    Fogelman I. Diphosphonate bone scanning agents – current concepts. Eur J Nucl Med. 1982;7:506–9.PubMedGoogle Scholar
  91. 91.
    Fogelman I, Bessent RG, Cohen HN, et al. Skeletal uptake of diphosphonate. Method for prediction of post-menopausal osteoporosis. Lancet. 1980;2:667–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Love C, Din AS, Tomas MB, et al. Radionuclide for bone imaging: an illustrative review. Radiographics. 2003;23:341–58.PubMedCrossRefGoogle Scholar
  93. 93.
    Bombardieri E, Aktoloun C, Baum RP, et al. Bone scintigraphy: procedure guidelines. Eur J Nucl Med Mol Imaging. 2003;30:BP99–106.PubMedGoogle Scholar
  94. 94.
    Bombardieri E, Setti L, Kirienko M, et al. Which metabolic imaging, besides bone scan with 99mTc-phosphonates, for detecting and evaluating bone metastases in prostatic cancer patients? An open discussion. Q J Nucl Med Mol Imaging. 2015;59:381–99.PubMedGoogle Scholar
  95. 95.
    Gnanasegaran G, Cook G, Adamson K, Fogelman I. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med. 2009;39:380–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Iagaru A, Mittra E, Dick DW, Gambhir SS. Prospective evaluation of 99mTc MDP Scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol. 2012;14:252–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Briganti A, Passoni N, Ferrari M, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol. 2010;57:551–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Passoni NM, Di Trapani E, Suardi N, et al. Clinical and diagnostic assessment for therapeutic decisions in prostate cancer. Q J Nucl Med Mol Imaging. 2012;56:321–30.PubMedGoogle Scholar
  99. 99.
    Lee CT, Oesterling JE. Using prostate-specific antigen to eliminate the staging radionuclide bone scan. Urol Clin N Am. 1997;24:389–94.CrossRefGoogle Scholar
  100. 100.
    Chybowski FM, Keller JJ, Bergstralh EJ, Oesterling JE. Predicting radionuclide bone scan finding in patients with mewly diagnoses untreated prostate cancer: PSA is superior to all other clinical parameters. J Urol. 1991;145:313–8.PubMedGoogle Scholar
  101. 101.
    Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90:766–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Boorjian SA, Karnes RJ, Rangel LJ, Bergstralh EJ, Blute ML. Mayo Clinic validation of the D’Amico risk group classification for predicting survival following radical prostatectomy. J Urol. 2008;179:1354–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Lughezzani G, Briganti A, Karakiewicz PI, et al. Predictive and prognostic models in radical prostatectomy candidates: a critical analysis of the literature. Eur Urol. 2010;58:687–700.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Choi WW, Williams SB, Gu X, et al. Overuse of imaging for staging low risk prostate cancer. J Urol. 2011;185:1645–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Pucar D, Sella T, Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol. 2008;18:87–97.PubMedCrossRefGoogle Scholar
  106. 106.
    D’Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969–74.PubMedCrossRefGoogle Scholar
  107. 107.
    Dotan ZA, Bianco Jr FJ, Rabbani F, et al. Pattern of PSA failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. J Clin Oncol. 2005;23:1962–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Evangelista L, Bertoldo F, Boccardo F, et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging. 2016;43:1546–62.PubMedCrossRefGoogle Scholar
  109. 109.
    Messiou C, Cook G, de Souza MN. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer. 2009;101:1225–32.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Levenson RM, Sauerbrunn BJ, Bates HR, et al. Comparative value of bone scintigraphy and radiography in monitoring tumour response in systemically treated prostatic carcinoma. Radiology. 1983;146:513–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Pollen JJ, Witztum KF, Ashburn WL. The flare phenomenon on radionuclide bone scan in metastatic prostate cancer. AJR Am J Roentgenol. 1984;142:773–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Imbriaco M, Larson SM, Yeung HW, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the bone scan index. Clin Cancer Res. 1998;4:1765–72.PubMedGoogle Scholar
  113. 113.
    Mitsui Y, Shiina H, Yamamoto Y, et al. Prediction of survival benefit using an automated bone scan index in patients with castration-resistant prostate cancer. BJU Int. 2012;110:E628–34.PubMedCrossRefGoogle Scholar
  114. 114.
    Dennis ER, Jia X, Mezheritskiy IS, et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol. 2012;10:519–24.CrossRefGoogle Scholar
  115. 115.
    Kaboteh R, Damber JE, Gjersson P, et al. Bone scan index: a prognostic imaging for high risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res. 2013;3:9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Poulsen MH, Rasmussen J, Edenbrandt L, et al. Bone scan index predicts outcome in patients with metastatic hormone-sensitive prostate cancer. BJU Int. 2016;117:748–53.PubMedCrossRefGoogle Scholar
  117. 117.
    Reza M, Bjartell A, Ohisson M, et al. Bone scan index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res. 2014;4:58.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sarikaya I, Sarikaya A, Holder LE. The role of single photon emission computed tomography in bone imaging. Semin Nucl Med. 2001;31:3–16.PubMedCrossRefGoogle Scholar
  119. 119.
    Sedonja I, Budihna NV. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med. 1999;24:407–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45:27–37.PubMedGoogle Scholar
  121. 121.
    Romer W, Nomayr A, Uder M, Bautz W, Kuwert T. SPECT-guided CT for evaluating foci of increased bone metabolism classified as indeterminate on SPECT in cancer patients. J Nucl Med. 2006;47:1102–6.PubMedGoogle Scholar
  122. 122.
    Gnanasegaran G, Barwick T, Adamson K, et al. Multislice SPECT/CT in benign and malignant bone disease: when the ordinary turns into the extraordinary. Semin Nucl Med. 2009;39:431–42.PubMedCrossRefGoogle Scholar
  123. 123.
    Helyar V, Mohan HK, Barwick T, et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37:706–13.PubMedCrossRefGoogle Scholar
  124. 124.
    Ndlovu X, George R, Ellmann A, Warwick J. Should SPECT-CT replace SPECT for the evaluation of equivocal bone scan lesions in patients with underlying malignancies? Nucl Med Commun. 2010;31:659–65.PubMedGoogle Scholar
  125. 125.
    Sharma P, Dhull VS, Reddy RM, et al. Hybrid SPECT-CT for characterizing isolated vertebral lesions observed by bone scintigraphy: comparison with planar scintigraphy, SPECT, and CT. Diagn Interv Radiol. 2013;19:33–40.PubMedGoogle Scholar
  126. 126.
    Palmedo H, Marx C, Ebert A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67.PubMedCrossRefGoogle Scholar
  127. 127.
    Schirrmeister H, Guhlmann A, Elsner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.PubMedGoogle Scholar
  128. 128.
    Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.PubMedGoogle Scholar
  129. 129.
    Segall G, Delbeque D, Stabin MG, et al. SNM practice guidelines of sodium 18F-fluoride PET/CT bone scan. J Nucl Med. 2010;52:1813–20.CrossRefGoogle Scholar
  130. 130.
    Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.PubMedCrossRefGoogle Scholar
  131. 131.
    Beheshti M, Mottaghy FM, Payche F, et al. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.PubMedCrossRefGoogle Scholar
  132. 132.
    Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med. 2006;36:73–92.PubMedCrossRefGoogle Scholar
  133. 133.
    Park-Holohan SJ, Blake GM, Fogelman I. Quantitative studies of bone using 18F-fluoride and 99mTc-methylene diphosphonate: evaluation of renal and whole-blood kinetics. Nucl Med Commun. 2001;22:1037–44.PubMedCrossRefGoogle Scholar
  134. 134.
    Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.PubMedCrossRefGoogle Scholar
  135. 135.
    Araz M, Aras G, Kucuk ON. The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol. 2015;4:92–7.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Fox JJ, Schoder H, Larson SM. Molecular imaging of prostate cancer. Curr Opin Urol. 2012;22:320–7.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Apolo AB, Lindenberg L, Shih JH, et al. Prospective study evaluating Na18F-positron emission tomography/computed tomography (NaF-PET/CT) in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57:886–92.PubMedCrossRefGoogle Scholar
  138. 138.
    Poulsen MH, Petersen H, Hoilund-Carlsen PF, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [18F]choline positron emission tomography (PET)/computed tomography (CT) and [18F]NaF PET/CT. BJU Int. 2014;114:818–23.PubMedCrossRefGoogle Scholar
  139. 139.
    Zukotynski KA, Kim CK, Gerbaudo VH, et al. 18F-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging. 2015;5:72–82.PubMedGoogle Scholar
  140. 140.
    Hillner BE, Siegel BA, Hanna L, et al. 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET Registry. J Nucl Med. 2015;56:222–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Jadvar H, Desai B, Ji L, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med. 2012;37:637–43.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wade AA, Scott JA, Kuter I, Fischman AJ. Flare response in 18F-fluoride in PET bone scanning. AJR Am J Roentgenol. 2006;186:1783–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Muzahir S, Jeraj R, Liu G, et al. Differentiation of metastatic vs degenerative joint disease using semi-quantitative analysis with 18F-NaF PET/CT in castrate resistant prostate cancer patients. Am J Nucl Med Mol Imaging. 2015;5:162–8.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Rosen RS, Fayad L, Wahl RL. Increased 18F-FDG uptake in degenerative disease of the spine: characterization with 18F-FDG PET/CT. J Nucl Med. 2006;47:1274–80.PubMedGoogle Scholar
  145. 145.
    Sabbah N, Jackson T, Mosci C, et al. 18F-sodium fluoride PET/CT in oncology: an atlas of SUVs. Clin Nucl Med. 2015;40:e228–31. doi:10.1097/RLU.0000000000000633.PubMedCrossRefGoogle Scholar
  146. 146.
    Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12:413–39.PubMedCrossRefGoogle Scholar
  147. 147.
    Janardhan S, Srivani P, Sastry GN. Choline kinase: an important target for cancer. Curr Med Chem. 2006;13:1169–86.PubMedCrossRefGoogle Scholar
  148. 148.
    De Grado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of 18F-F-labeled choline as an oncologic tracer for PET: initial findings in prostate cancer. Cancer Res. 2001;61:110–7.Google Scholar
  149. 149.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.PubMedGoogle Scholar
  150. 150.
    Tolvanen T, Yli-Kerttula T, Ujula T, et al. Biodistribution and radiation dosimetry of 11C-choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–83.PubMedCrossRefGoogle Scholar
  151. 151.
    Bauman G, Belhocine T, Kovacs M, et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2012;15:45–55.PubMedCrossRefGoogle Scholar
  152. 152.
    Chondrogiannis S, Marzola MC, Grassetto GB, et al. New acquisition protocol of 18F-choline PET/CT in prostate cancer patients: review of the literature about methodology and proposal of standardization. Biomed Res Int. 2014;2014:215650. doi:10.1155/2014/. Epub 2014 June 10.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Evangelista L, Briganti A, Fanti S, et al. New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 2016;70:161–75.PubMedCrossRefGoogle Scholar
  154. 154.
    McCarthy M, Slew T, Campbell A, et al. 18F-fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging. 2011;38:14–22.PubMedCrossRefGoogle Scholar
  155. 155.
    Evangelista L, Guttila A, Zattoni F, et al. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate-to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63:1040–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Beheshti M, Broiger G, Vali R, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.PubMedCrossRefGoogle Scholar
  157. 157.
    Schiavina RSV, Castellucci P, Picchio M, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54:392–401.PubMedCrossRefGoogle Scholar
  158. 158.
    De Bari B, Alongi F, Lestrade L, Giammarile F. Coline-PET in prostate cancer management: the point of view of the radiation oncologist. Crit Rev Oncol Hematol. 2014;91:234–47.PubMedCrossRefGoogle Scholar
  159. 159.
    Poulsen MH, Bouchelouche K, Hoilund-Carlsen PF, et al. 18F-fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int. 2012;110:1666–71.PubMedCrossRefGoogle Scholar
  160. 160.
    Krause BJ, Souvatzoglou M, Treiber U. Imaging of prostate cancer with PET/CT and radioactively labelled choline derivates. Urol Oncol. 2013;31:427–35.PubMedCrossRefGoogle Scholar
  161. 161.
    Graziani T, Ceci F, Castellucci P, et al. 11C-choline PET/CT for restaging prostate cancer. Results form 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging. 2016. Epub ahead of print. 43(11):1971–79.Google Scholar
  162. 162.
    Beheshti M, Vali R, Waldenberger P, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2010;12:98–107.PubMedCrossRefGoogle Scholar
  163. 163.
    Kjolhede H, Ahlgren G, Almquist H, et al. Combined 18F-fluorocholine and 18F-fluoride positron emission tomography/computed tomography imaging for staging of high-risk prostate cancer. BJU Int. 2012;110:1501–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Picchio M, Spinapolice EG, Fallanca F, et al. 11C-choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13–26.PubMedCrossRefGoogle Scholar
  165. 165.
    Langsteger W, Haim S, Knauer M, et al. Imaging of bone metastases in prostate cancer: an update. Q J Nucl Med Mol Imaging. 2012;56:447–58.PubMedGoogle Scholar
  166. 166.
    von Eyben FE, Kairemo K. Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun. 2014;35:221–30.CrossRefGoogle Scholar
  167. 167.
    Fuccio C, Castellucci P, Schiavina R, Guidalotti PL, Gavaruzzi G, Montini GC, et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol. 2012;81:893–6.CrossRefGoogle Scholar
  168. 168.
    Ceci F, Castellucci P, Graziani T, et al. 11C-choline PET/CT identifies osteoblastic and osteolytic lesions in patients with metastatic prostate cancer. Clin Nucl Med. 2015;40:265–70.CrossRefGoogle Scholar
  169. 169.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kwee SA, Lim J, Watanabe A, et al. Prognosis related to metastatic burden measured by 18F-fluorocholine PET/CT in castration resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2014;55:905–10.Google Scholar
  171. 171.
    Oprea-Lager DE, Kramer G, van de Ven PM, van den Eertwegh AJ, van Moorselaar RJ, Schober P, et al. Repeatability of quantitative 18F-fluoromethylcholine PET/CT studies in prostate cancer. J Nucl Med. 2016;57:721–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.PubMedCrossRefGoogle Scholar
  173. 173.
    Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.PubMedGoogle Scholar
  174. 174.
    Morigi JJ, Stricker PD, van Leeuwen PJ, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90.PubMedCrossRefGoogle Scholar
  175. 175.
    Manyak MJ. Indium 111 capromab pendetide in the management of recurrent prostate cancer. Exp Rev Anticancer Ther. 2008;18:175–81.CrossRefGoogle Scholar
  176. 176.
    Pandit-Taskar N, O’Donoghue JA, Durack JC. A phase I/II sudy for analytical validation of 89Zr-J591 ImmunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res. 2015;21:5277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Afshar-Oromieh A, Zechmann CM, Malcher A, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2013;41:11–20.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Fendler WP, Schmidt DF, Wenter V, et al. 68Ga-PSMA-HBED-CC PET/CT detects location and extent of primary prostate cancer. J Nucl Med. 2016. pii: jnumed.116.172627. [Epub ahead of print].Google Scholar
  179. 179.
    Zettinig O, Shaha A, Hennesperger C, et al. Multimodal image-guided prostate fusion biopsy based on automatic deformable registration. Int J Comput Assist Surg. 2015;10:1997–2007.CrossRefGoogle Scholar
  180. 180.
    Maurer T, Gschwend JE, Rauscher I, et al. Diagnosic efficacy of 68Ga-PSMA PET compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate high-risk prostate cancer. J Urol. 2016;195:1436–43.PubMedCrossRefGoogle Scholar
  181. 181.
    Budaus L, Leyh-Bannurah SR, Salomoin G, et al. Intial experience of 68Ga PSMA PET/CT imaging in high risk prostate cancer patients prior to radical prostatectomy. Eur Urol. 2016;69:393–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Queiroz MA, Viana P, Santos A, et al. Clinical impact of 68Ga-PSMA PET/CT in a patient with biochemical recurrence of prostate cancer. Clin Nucl Med. 2016;41:e417–9. Epub ahead of print.PubMedCrossRefGoogle Scholar
  183. 183.
    Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56:668–74.PubMedCrossRefGoogle Scholar
  184. 184.
    Verburg FA, Pfister D, Heidenreich A, et al. Extent of disease in recurrent prostate cancer determined by [68Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging. 2016;43:397–403.PubMedCrossRefGoogle Scholar
  185. 185.
    Perera M, Papa N, Christidis D, et al. Sensitivity, specificity and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016; pii: S0302-2838(16)30293-7. doi: 10.1016/j.eururo.2016.06.021. [Epub ahead of print].Google Scholar
  186. 186.
    Sterzing F, Kratochwil C, Fiedler H, et al. 68Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2016;43:34–41.PubMedCrossRefGoogle Scholar
  187. 187.
    Maurer T, Eiber M, Schwaiger M, et al. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol. 2016;13:226–35.PubMedCrossRefGoogle Scholar
  188. 188.
    Cho SY, Gage KL, Mease RC, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53:1883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Chen Y, Pullambhatla M, Foss CA, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res. 2011;17:7645–53.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Rowe SP, Macura KJ, Ciarallo A, et al. Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med. 2016;57:46–53.PubMedCrossRefGoogle Scholar
  191. 191.
    Rowe SP, Mana-Ay M, Javadi MS, et al. PSMA-based detection of prostate cancer bone lesions with 18F-DCFPyL PET/CT: a sensitive alternative to 99mTc-MDP bone scan and Na18F PET/CT? Clin Genitourin Cancer. 2016;14:e115–8.PubMedCrossRefGoogle Scholar
  192. 192.
    Oka S, Hattori R, Kurosaki F, et al. A preliminary study of anti-1-amino-318F-fluorocyclobutyl-1 carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48:46–55.PubMedGoogle Scholar
  193. 193.
    Sorensen J, Owenius R, Lax M, et al. Regional distribution and kinetics of 18F fluciclovine (anti-18FFABC) a tracer of aminoacid transport, in subject with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40:394–402.PubMedCrossRefGoogle Scholar
  194. 194.
    Okudaira H, Shikano N, Nishii R, et al. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med. 2011;52:822–9.PubMedCrossRefGoogle Scholar
  195. 195.
    McParland BJ, Wall A, Johansson S, Sørensen J. The clinical safety, biodistribution and internal radiation dosimetry of [18F]fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging. 2013;40:1256–64.PubMedCrossRefGoogle Scholar
  196. 196.
    Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.PubMedCrossRefGoogle Scholar
  197. 197.
    Asano Y, Inoue Y, Ikeda Y, et al. Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med. 2011;25:414–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Kairemo K, Rasulova N, Partanen K, et al. Preliminary clinical experience of trans-1-amino-3-18F-fluocyclobutanecarboxylic acid (anti-18F-FACBC)-PET/CT image in prostate cancer patients. Biomed Res Int. 2014;2014:305182. doi:10.1155/2014/305182. Epib 2014 Jun 1.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Turkbey B, Mena E, Shih J, et al. Localized prostate cancer detection with 18F-FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology. 2014;3:849–56.CrossRefGoogle Scholar
  200. 200.
    Odewole OA, Tade FI, Nieh PT, et al. Recurrent prostate cancer detection with anti-3 18F FACB PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging. 2016;43:1773–83.PubMedCrossRefGoogle Scholar
  201. 201.
    Schuster DM, Nieh PT, Jani AB, et al. Anti-3-[18F]FACBC positron emission tomography-computerized tomography and 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol. 2014;191:1446–53.PubMedCrossRefGoogle Scholar
  202. 202.
    Nanni C, Schiavina R, Brunocilla E, et al. 18F-fluciclovine PET/CT for the detection of prostate cancer relapse: a comparison to 11C-choline PET/CT. Clin Nucl Med. 2015;40:386–91.CrossRefGoogle Scholar
  203. 203.
    Macheda ML, Rogers S, Bets JD. Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.PubMedCrossRefGoogle Scholar
  204. 204.
    Effert P, Beniers AJ, Tamimi Y, et al. Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. Anticancer Res. 2004;24:3057–63.PubMedGoogle Scholar
  205. 205.
    Kukuk D, Reischl G, Raguin O, et al. Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models. J Nucl Med. 2011;52:1654–6.PubMedCrossRefGoogle Scholar
  206. 206.
    Jadvar H, Ye W, Groshen S. 18F-fluorodeoxyglucose PET-CT of the normal prostate gland. Ann Nucl Med. 1998;22:787–93.CrossRefGoogle Scholar
  207. 207.
    Jadvar H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013;40:S5–10.PubMedCrossRefGoogle Scholar
  208. 208.
    Liu IJ, Zafar MB, Lai YH, et al. Fluorodeoxyglucose PET studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11.PubMedCrossRefGoogle Scholar
  209. 209.
    Kao PF, Chou YH, Iai CW. Diffuse FDG uptake in acute prostatitis. Clin Nucl Med. 2008;33:308–10.PubMedCrossRefGoogle Scholar
  210. 210.
    Oyama N, Akino H, Suzuki Y, et al. The increased accumulation of 18F-fluoredeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol. 1999;29:623–9.PubMedCrossRefGoogle Scholar
  211. 211.
    Morris NJ, Akhurst T, Osman I, et al. Fluorinated deoxyglucose PET imaging in progressive metastatic prostate cancer. Urology. 2002;59:913–8.PubMedCrossRefGoogle Scholar
  212. 212.
    Jadvar H, Pinski J, Conti P. FDG PET in suspected recurrent and metastatic prostate cancer. Oncol Rep. 2003;10:1485–8.PubMedGoogle Scholar
  213. 213.
    Chang CH, Wu HC, Tsai JJ, et al. Detecting metastatic pelvic lymph nodes by 18F-2 deoxyglucose positron tomography in patients with PSA relapse after treatment with localized prostate cancer. Urol Int. 2003;70:311–5.PubMedCrossRefGoogle Scholar
  214. 214.
    Schoder H, Hermann K, Gonen M, et al. 18F Fluorodeoxyglucose positron emission tomography for detection of disease in patients with PSA relapse after radical prostatectomy. Clin Cancer Res. 2005;11:4761–9.PubMedCrossRefGoogle Scholar
  215. 215.
    Zhang Y, Saylor M, Wen S, et al. Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol. 2006;8:300–8.PubMedCrossRefGoogle Scholar
  216. 216.
    Zukotynski KA, Kim CK, Gerbaudo VH, et al. 18FF-FDG-PET/CT and 18F-NaF-PET/CT in men with castrate-resistant prostate cancer. Am J Nucl Med Mol Imaging. 2014;5:72–82.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Courtney KD, Manola JB, Elfiky AA, et al. A phase I study of everolimus and docetaxel in patients with castration-resistant prostate cancer. Clin Genitourin Cancer. 2015;13:113–23.PubMedCrossRefGoogle Scholar
  218. 218.
    Yu EY, Muzi M, Hackenbracht JA, et al. C-11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36:192–8.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Morris MJ, Akhurst T, Larson SM, et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res. 2005;11:3210–6.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Meirelles GS, Schoder H, Ravizzini GC, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16:6093–9.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Vargas HA, Wassberg C, Fox JJ, et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology. 2014;271:220–9.PubMedCrossRefGoogle Scholar
  222. 222.
    Jadvar H, Desai B, Ji L, et al. Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J Nucl Med. 2013;54:1195–2001.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Jadvar H, Groshen SG, Quinn DI. Association of overall survival with glycolytic activity of castrate-resistant prostate cancer metastases. Radiology. 2015;274:624–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Emilio Bombardieri
    • 1
    • 2
  • Maria Grazia Sauta
    • 3
  • Lucia Setti
    • 2
  • Roberta Meroni
    • 4
  • Gianluigi Ciocia
    • 2
    • 5
  • Laura Evangelista
    • 6
  1. 1.Department of Nucleare MedicineHumanitas Gavazzeni HospitalBergamoItaly
  2. 2.Nuclear Medicine Unit“Humanitas Gavazzeni” HospitalBergamoItaly
  3. 3.Oncology Unit“Humanitas Gavazzeni” HospitalBergamoItaly
  4. 4.Radiology Unit“Humanitas Gavazzeni” HospitalBergamoItaly
  5. 5.Radiotherapy Unit“Humanitas Gavazzeni” HospitalBergamoItaly
  6. 6.Nuclear Medicine and Molecular Imaging UnitVeneto Institute of Oncology IOV - IRCCSPaduaItaly

Personalised recommendations