Skip to main content

Biosynthesis of the Cell Walls of the Algae

  • Chapter
  • First Online:
The Physiology of Microalgae

Part of the book series: Developments in Applied Phycology ((DAPH,volume 6))

Abstract

Algae constitute a large and diverse array of photosynthetic eukaryotes that are common to most of modern earth’s photic zones. Algae are critical to global primary production, CO2 sequestering and biomineralization as well as being of economic significance in the food, pharmaceutical and biofuel industries. The extracellular matrix of algal cells, most notably the cell wall, is of fundamental significance to survival and often serves as the major product of photosynthetic carbon fixation. The cell walls of most algae consist of a framework of fibrillar polysaccharides that are embedded in a matrix composed of neutral and charged polysaccharides along with various proteins, phenolics and complexed cations. The fibrillar components include mannans, xylans and most notably, cellulose, whose synthesis occurs in membrane-bound enzyme complexes. These load-bearing fibrillar components are inserted in complex networks of polysaccharides that include hemicelluloses and polyanionic polymers such as pectins, alginates, fucoidans and the sulfated galactans of red algae, agar and carageenan. These polymers are synthesized in the Golgi Apparatus, transported to cell surface sites via actin- and tubulin-based motors and deposited in the wall complex. Often, post-secretory crosslinking with cations alters the structural architecture of these polymers that, in turn, influences the strength and function of the cell wall. Proteins are also found in algal cell walls including highly glycosylated and hydroxyproline-rich forms, some of which have structural semblance to extensins and arabinogalactan proteins of land plants. Modern molecular and immunobinding studies are now probing the specific mechanisms in wall development including modulations that occur during morphogenesis and in response to environmental triggers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wherever possible the currently accepted names for species are used. The name used in the paper cited is also indicated. For details of names see chapter “Systematics, Taxonomy and Species Names: Do They Matter?” of this book (Borowitzka 2016).

References

  • Abedin M, King N (2010) Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adair WS, Snell WJ (1990) The Chlamydomonas reinhardtii cell wall: structure, biochemistry and molecular biology. In: Mecham RP, Adair WS (eds) Organization and assembly of plant and animal extracellular matrix. Academic, Orlando, pp 15–84

    Chapter  Google Scholar 

  • Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki Y, Gonzalez EL (1998) V- and P-type Ca-stimulated ATPases in a calcifying strain of Pleurochrysis sp. (Haptophyceae). J Phycol 34:79–88

    Article  CAS  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Ann Rev Plant Biol 64:747–779

    Article  CAS  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagroa G, Montero M, Etxeberri E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci U S A 109:321–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashline L, Li S, Anderson CT, Lei L, Gu Y (2013) The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clatrin-mediated endocytosis adaptin. Plant Physiol 163:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylson FA, Stevens BW, Domozych DS (2001) Composition and synthesis of the pectin and protein components of the cell wall of Closterium acerosum (Chlorophyta). J Phycol 37:796–809

    Article  CAS  Google Scholar 

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    Google Scholar 

  • Becker B, Melkonian M (1992) N-linked glycoproteins associated with flagellar scales in a flagellate green alga: characterization of interactions. Eur J Cell Biol 57:109–116

    CAS  PubMed  Google Scholar 

  • Becker B, Becker D, Kamerling J, Melkonian M (1991) 2-keto-sugar acids in green flagellates: a chemical marker for prasinophycean scales. J Phycol 27:498–504

    Article  CAS  Google Scholar 

  • Becker B, Marin B, Melkonian M (1994) Structure, composition, and biogenesis of prasinophyte scale coverings. Protoplasma 181:233–244

    Article  Google Scholar 

  • Becker B, Lommerse JPM, Melkonian M, Kamerling JP, Vliegenthart JFG (1995) The structure of an acidic trisaccharide component from a cell wall polysaccharide preparation of the green alga Tetraselmis striata Butcher. Carbohydr Res 267:313–321

    Article  CAS  Google Scholar 

  • Becker B, Perasso L, Kammann A, Salzburg M, Melkonian M (1996) Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) for high-molecular-weight complexes between scale layers and the flagellar membrane. Planta 199:503–510

    Article  CAS  Google Scholar 

  • Berglin M, Delage I, Potin P, Vilter H, Elwing H (2004) Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromol 5:2376–2383

    Article  CAS  Google Scholar 

  • Bisgrove SR, Kropf DL (2001) Cell wall deposition during morphogenesis in fucoid algae. Planta 212:648–658

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 655–681

    Google Scholar 

  • Brabham C, DeBolt S (2013) Chemical genetics to examine cellulose biosynthesis. Front Plant 3:309. doi:10.3389/fpls.2012.00309

    Google Scholar 

  • Braybrook SA, Hofte H, Peaucelle A (2012) Probing the mechanical contributions of the pectin matrix. Plant Signal Behav 7:1037–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch-Salomon S, Hoftberger M, Holzinger A, Lutz-Meindl (1998) Ultrastructural localization of polysaccharides and N-acetylgalactosamine in the secretory pathway of green algae (Desmidiaceae). J Exp Bot 319:145–153

    Google Scholar 

  • Brownlee C, Taylor A (2004) Calcification in coccolithophores: a cellular perspective. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impacts. Springer, Berlin, pp 31–49

    Chapter  Google Scholar 

  • Burton RA, Fincher GB (2009) (1,3;1,4)-ß-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–882

    Article  CAS  PubMed  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callow ME, Coughlan SJ, Evans LV (1978) The role of golgi bodies in polysaccharide sulphation in Fucus zygotes. J Cell Sci 32:337–356

    CAS  PubMed  Google Scholar 

  • Ciancia M, Alberghina J, Arata PX, Benavides H, Leliaert F, Verbruggen H, Estevez JM (2012) Charcterization of cell wall polysaccharides of the coenocytic green seaweed Bryopsis plumosa (Bryopsidaceae, Chlorophyta) from the Argentine coast. J Phycol 48:326–335

    Article  CAS  Google Scholar 

  • Cock JM et al (2009) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  Google Scholar 

  • Coelho SM, Scornet D, Rousvoal S, Peters NT, Dartevelle L, Peters AF, Cock JM (2012) Ectocarpus: a model organism for the brown algae. Cold Spring Harb Protoc 2012:193–198

    PubMed  Google Scholar 

  • Corstjens PLM, González EL (2004) Effects of nitrogen and phosphorus availability on the expression of the coccolith-vesicle V-ATPase proton pump: cloning and immunolocalization. J Phycol 40:82–87

    Article  CAS  Google Scholar 

  • Corstjens PLAM, Araki Y, González EL (2001) A coccolithophorid calcifying vesicle with a vacuolar–type ATPase proton pump: cloning and immunolocalization of the Vo subunit. J Phycol 37:31–38

    Article  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2014) Re-constructing our models of cellulose and primary wall assembly. Curr Opin Plant Biol 22:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of red algae. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Crawford RM, Schmid AM (1986) Ultrastructure of silica deposition in diatoms. In: Leadbeater BS, Riding R (eds) Biomineralization in lower plants and animals. The Systematics Society, London, pp 291–314

    Google Scholar 

  • Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons A-E, Hofte H, Vernhettes S (2011) Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell 23:2592–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JM (2014) Annexin-mediated calcium signaling in plants. Plants 3:128–140

    Article  CAS  Google Scholar 

  • Domozych DS (1991) The golgi apparatus and membrane trafficking in green algae. Int Rev Cytol 131:213–253

    Article  CAS  PubMed  Google Scholar 

  • Domozych DS, Dairman M (1993) Synthesis of the inner cell wall of the chlamydomonad flagellate, Gloeomonas kupfferi. Protoplasma 176:1–13

    Article  Google Scholar 

  • Domozych DS, Stewart KD, Mattox KR (1981) Development of the cell wall in Tetraselmis: role of the golgi apparatus and extracellular wall assembly. J Cell Sci 52:351–371

    CAS  PubMed  Google Scholar 

  • Domozych DS, Wells B, Shaw P (1991) Basket scales of the green alga, Mesostigma viride: chemistry and ultrastructure. J Cell Sci 100:397–407

    CAS  Google Scholar 

  • Domozych DS, Serfis A, Kiemle SN, Gretz MR (2007a) The structure and biochemistry of charophycean cell walls. I. Pectins of Penium margaritaceum. Protoplasma 230:99–115

    Article  CAS  PubMed  Google Scholar 

  • Domozych DS, Elliott L, Kiemle SN, Gretz MR (2007b) Pleurotaenium trabecula, a desmid of wetland biofilms: the extracellular matrix and adhesion mechanisms. J Phycol 43:1022–1038

    Article  CAS  Google Scholar 

  • Domozych DS, Lambiasse L, Kiemle S, Gretz MR (2009a) Cell-wall development and bipolar growth in the desmid Penium margaritaceum (Zygnematophyceae, Streptophyta). Asymmetry in a symmetric world. J Phycol 45:879–893

    Article  CAS  Google Scholar 

  • Domozych DS, Sørensen I, Willats WGT (2009b) The distribution of cell wall polymers during antheridium development and spermatogenesis in the charophycean green alga, Chara corallina. Ann Bot 104:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domozych DS, Brechka H, Britton A, Toso M (2011) Cell wall growth and modulation dynamics in a model unicellular green alga - Penium margaritaceum: live cell labeling with monoclonal antibodies. J Bot 2011:632165. doi:10.1155/2011/632165

    Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82. doi:10.3389/fpls.2012.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domozych DS, Sørensen I, Popper Z, Ochs J, Andreas A, Fangel JU, Pielach A, Sacks C, Brechka H, Willats WGT, Rose JKC (2014a) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:105–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domozych DS, Sørensen I, Sacks C, Brechka H, Andreas A, Fangel JU, Rose JKC, Willats WGT, Popper ZA (2014b) Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. J Exp Bot 65:465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drescher B, Dillaman RN, Taylor AR (2012) Coccolithogenesis in Scyphosphaera apsteinii (Prymnesiophyceae). J Phycol 48:1343–1361

    Article  Google Scholar 

  • Driouich A, Follet-Gueye M-L, Bernard S, Kousar S, Chevalier L, Vicre’-Gibouin M, Lerouxel O (2012) Golgi-mediated synthesis and secretion of matrix polysaccharide of the primary cell wall of higher plants. Front Plant Sci 3:79. doi:10.3339/fpls.2012.00079

    Article  PubMed  PubMed Central  Google Scholar 

  • Eder M, Lutz-Meindl U (2008) Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 231:210–214

    Article  Google Scholar 

  • Eder M, Lutz-Meindl U (2010) Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma 243:25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder M, Tenhaken R, Driouich A, Lutz-Meindl U (2008) Occurrence and characterization of arabinogalactan-like proteins and hemicelluloses in Micrasterias (Streptophyta). J Phycol 44:1221–1234

    Article  CAS  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan proteins: key regulators at the cell surface. Plant Physiol 153:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ertl H, Hallmann A, Wenzl S, Sumper M (1992) A novel extensin that may organize extracellular matrix biogenesis in Volvox carteri. EMBO J 11:2055–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez JM, Kieliszewski MJ, Khitrov N, Somerville C (2006) Charcterization of synthetic hydroxyproline-rich proteoglycans with arabinogalactan protein and extensin motifs in Arabidopsis. Plant Physiol 142:458–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez JM, Leonardi PL, Alberghina JS (2008) Cell wall carbohydrate epitopes in the green alga Oedogonium bharuchae f. minor (Oedogoniales, Chlorophyta). J Phycol 44:1257–1268

    Article  CAS  Google Scholar 

  • Estevez JM, Kasuli L, Fernandez PV, Dupree P, Ciancia M (2009) Chemical in situ characterization of macromolecular components of the complex cell walls from the coenocytic green alga Codium fragile. Glycobiology 18:250–259

    Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho-GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  • Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG (2012) Cell wall evolution and diversity. Front Plant Sci 3:152. doi:193389/fpls.2012.00152

    Google Scholar 

  • Fernandez PV, Ciancia M, Miravalles AB, Estevez JM (2010) Cell-wall polymer mapping in the coenocytic macroalga Codium vermilaria (Bryopsidales, Chlorophyta). J Phycol 46:456–465

    Article  CAS  Google Scholar 

  • Fowler JE, Vejlupkova Z, Goodner BW, Lu G, Quatrano RS (2004) Localization to the rhizoid tip implicates a Fucus distichus Rho family GTPase in a conserved cell polarity pathway. Planta 219:856–866

    Article  CAS  PubMed  Google Scholar 

  • Franková L, Fry SC (2013) Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. (Darwin review). J Exp Bot 64:3519–3550

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. Blackwell Press, Caldwell, 320 pp

    Google Scholar 

  • Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339

    Article  PubMed  Google Scholar 

  • Goodenough UW, Heuser JE (1985) Molecular organization of cell-wall crystals from Chlamydomonas reinhardtii and Volvox carteri. J Cell Sci 90:717–733

    Google Scholar 

  • Graham LE (1993) Origin of land plants. Wiley, New York

    Google Scholar 

  • Graham LE, Graham J, Wilcox L (2009) Algae, 2nd edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integ Plant Biol 52:61–175

    Article  CAS  Google Scholar 

  • Gutierrez R, Lindeboom J, Paradez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biol 11:797–806

    Article  CAS  PubMed  Google Scholar 

  • Harholt J, Suttangkakul A, Scheller V (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris D, Bulone V, Ding S-Y, DeBolt S (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153:420–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa Y, Fujiwara S, Ysuzuki M (2005) Three types of acidic polysaccharides associated with coccolith of Pleurochrysis haptonemofera: comparison with Pleurochrysis carterae and analysis using fluorescein-isothyocyanate-labeled lectins. Mar Biotechnol 7:634–644

    Article  CAS  PubMed  Google Scholar 

  • Höhfeld I, Melkonian M (1992) Amphiesmal ultrastructure of dinoflagellates: a reevaluation of pellicle formation. J Phycol 28:82–89

    Article  Google Scholar 

  • Holzinger A (2000) Aspects of cell development in Micrasterias muricata (Desmidiaceae) revealed by cryofixation and freeze substitution. Nova Hedwigia 70:275–288

    Google Scholar 

  • Imam SH, Buchanan MJ, Shin H-C, Snell WJ (1985) The Chlamydomonas cell wall characterization of the wall framework. J Cell Biol 101:1599–1607

    Article  CAS  PubMed  Google Scholar 

  • Katsaros C, Karyphyllis D, Galatis B (2003) F-actin cytoskeleton and cell wall morphogenesis in brown algae. Cell Biol Int 27:209–210

    Article  CAS  PubMed  Google Scholar 

  • Katsaros C, Karyphyllis D, Galatis B (2006) Cytoskeleton and morphogenesis in brown algae. Ann Bot 97:679–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayano K, Saruwatari K, Kogure T, Shiraiwa Y (2010) Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization. Mar Biotechnol 13:83–92

    Article  PubMed  CAS  Google Scholar 

  • Keskiaho K, Hieta R, Sornumen R, Myllyharju J (2007) Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell 19:256–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk DL, Birchem R, King N (1986) The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci 80:207–231

    CAS  PubMed  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Ann Rev 26:259–315

    Google Scholar 

  • Kröger N (2007) Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Opin Chem Biol 11:662–669

    Article  PubMed  CAS  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms—from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107

    Article  PubMed  CAS  Google Scholar 

  • Kwok ACM, Wong JTY (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok ACM, Wong JTY (2010) The activity of a wall-bound cellulase is required for and is coupled to cell cycle progression in the dinoflagellate Crypthecodinium cohnii. Plant Cell 22:1281–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahaye M, Robic A (2010) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    Article  CAS  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of extensin super family in primary cell wall architecture. Plant Physiol 156:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer G, de Nooijer LJ, Oetjen K (2010) On the role of the cytoskeleton in coccolith morphogenesis: the effect of cytoskeleton inhibitors. J Phycol 46:1252–1256

    Article  CAS  Google Scholar 

  • Le Bail A, Billoud B, Le Panse S, Chenivesse S, Charrier B (2011) ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus. Plant Cell 23:1666–1678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee KJD, Sakata Y, Mau S-L, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-H, Waffenschmidt S, Small GU (2007) Between-species analysis of short-repeat modules in cell wall and sex-related hydroxyproline-rich glycoproteins of Chlamydomonas. Plant Physiol 144:1813–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell walls- a complex process. Curr Op Plant Biol 9:621–630

    Article  CAS  Google Scholar 

  • Li L, Saga N, Mikami K (2008) Effects of cell wall synthesis on cell polarity in the red alga Porphyra yezoensis. Plant Sig Behav 3:1126–1128

    Article  Google Scholar 

  • Li L, Saga N, Mikami K (2009) Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis. J Exp Bot 60:3477–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz-Meindl U, Brosch-Salomon S (1999) Cell wall secretion in the green alga Micrasterias. J Microsc 198:208–217

    Article  Google Scholar 

  • Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol J 27:585–595

    Article  CAS  Google Scholar 

  • Manton I, Parke M (1965) Observations on the fine structure of two species of Platymonas with special reference to flagellar scales and the mode of origin of the theca. J Mar Biol Assoc UK 45:743–754

    Article  Google Scholar 

  • Marsh M (1999) Biomineralization in coccolithophores. Gravit Space Biol Bull 12:5–14

    CAS  PubMed  Google Scholar 

  • Martone PT, Navarro DA, Stortz CA, Estevez JM (2010) Differences in polysaccharide structure between calcified and uncalcified segments in the coralline Calliarthron cheilosporiodes (Corallinales, Rhodophyta). J Phycol 46:507–515

    Article  CAS  Google Scholar 

  • McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT (2014) Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC Plant Biol 14:79

    Article  PubMed  PubMed Central  Google Scholar 

  • McFadden GI, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). II. Cell wall secretion and assembly. Protoplasma 131:174–184

    Article  Google Scholar 

  • McFarlane HE, Doring A, Persons S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69–94

    Article  CAS  PubMed  Google Scholar 

  • Meindl U (1993) Micrasterias cells as a model system for research on morphogenesis. Microbiol Rev 57:415–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens K, Lynn M, Aycard M, Lin H-L, Louwye S (2009) Coccolithophores as palaeological indicator for shifts of the ITCZ in the Cariaco Basin during the late Quaternary. J Quat Sci 24:159–174

    Article  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188:82–97

    Article  CAS  PubMed  Google Scholar 

  • Mizuta S, Brown RM Jr (1992) High resolution analysis of the formation of cellulose-synthesizing complexes in Vaucheria hamata. Protoplasma 166:187

    Article  CAS  Google Scholar 

  • Moestrup O, Walne PL (1979) Studies on scale morphogenesis in the golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). J Cell Sci 36:437–459

    CAS  PubMed  Google Scholar 

  • Morrill LC, Loeblich AR (1983) Ultrastructure of the dinoflagellate amphiesma. Int Rev Cytol 82:151–180

    Article  CAS  PubMed  Google Scholar 

  • Mravec JJ, Kračun SK, Rydahl MG, Westereng B, Miart F, Clausen MH, Fangel JU, Daugaard M, Van Cutsem P, De Fine Licht HH, Höfte H, Malinovsky FG, Domozych DS, Willats WGT (2014) Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development 141:4841–4850

    Article  CAS  PubMed  Google Scholar 

  • Nagasato C, Motomura T (2009) Effect of latrunculin B and brefeldin A on cytokinesis in the brown alga Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae). J Phycol 45:404–412

    Article  CAS  Google Scholar 

  • Nagasato C, Inoue A, Mizuno M, Kanazawa K, Ojima T, Okuda K, Motomura T (2010) Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaeophyceae). Planta 232:287–298

    Article  CAS  PubMed  Google Scholar 

  • Nakashima J, Heathman A, Brown RM Jr (2006) Antibodies against a Gossypium hirsutum recombinant cellulose synthase (Ces A) specifically label cellulose synthase in Micrasterias denticulata. Cellulose 13:181–190

    Article  CAS  Google Scholar 

  • Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet J-C, Driouich A (2012) Arabinogalactan proteins in root and pollen tube cells: distribution and functional aspects. Ann Bot 110:383–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2004) The cell walls that bind the tree of life. Bioscience 54:831–841

    Article  Google Scholar 

  • Ochs J, LaRue T, Tinaz B, Yongue C, Domozych DS (2014) The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum. Ann Bot 114:1237–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, New York, pp 195–285

    Google Scholar 

  • Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Biosyst 109:397–402

    Article  CAS  Google Scholar 

  • Paradez A, Somerville CR, Ehrhardt DW (2006) Dynamic visualisation of cellulose synthase demonstrates functional association with cortical microtubules. Science 312:1491–1495

    Article  CAS  Google Scholar 

  • Percival E (1979) The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br Phycol J 14:103–117

    Article  Google Scholar 

  • Pflugl-Haill M, Vidali L, Vos JW, Hepler PK, Lutz-Meindl U (2000) Changes of the actin filament system in the green alga Micrasterias denticulata induced by different cytoskeleton inhibitors. Protoplasma 212:206–216

    Article  CAS  Google Scholar 

  • Popper ZA (2008) Evolution and diversity of plant cell walls. Cur Op Plant Biol 11:286–292

    Article  CAS  Google Scholar 

  • Popper ZA, Michel G, Herve C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:8.1–8.24

    Article  CAS  Google Scholar 

  • Pozdnyakov I, Skarlato S (2012) Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108–115

    Google Scholar 

  • Proseus TE, Boyer JS (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283–4292

    Article  CAS  PubMed  Google Scholar 

  • Proseus TE, Boyer JS (2008) Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle. Plant Cell Environ 31:1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Proseus TE, Boyer JS (2012) Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle. J Exp Bot 63:3953–3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Euk Cell 9:486–501

    Article  CAS  Google Scholar 

  • Ramus J (1972) The production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum. J Phycol 8:97–111

    CAS  Google Scholar 

  • Ray B, Lahaye M (1995) Cell-wall polysaccharides from the marine green alga Ulva ‘rigida” (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydr Res 274:313–318

    Article  CAS  Google Scholar 

  • Rinaudo M (2007) Seaweed polysaccharides. In: Kamerling JP (ed) Comprehensive glycoscience. From chemistry to systems biology, vol 2. Elsevier, New York, pp 691–735

    Chapter  Google Scholar 

  • Roberts K (1974) Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Phil Trans R Soc Lond Ser B Biol Sci 268:129–146

    Article  CAS  Google Scholar 

  • Roberts AW, Roberts E (2007) Evolution of the cellulose synthase (CesA) gene family: insights from green algae and seedless plants. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 17–34

    Chapter  Google Scholar 

  • Roberts E, Roberts AW (2009) A cellulose synthase (CesA) gene from the red alga Porphyra yezoensis (Rhodophyta). J Phycol 45:203–212

    Article  CAS  Google Scholar 

  • Roberts K, Grief C, Hills GJ, Shaw PJ (1985) Cell wall glycoproteins: structure and function. J Cell Sci Suppl 2:105–127

    Article  CAS  PubMed  Google Scholar 

  • Roberts AW, Roberts EM, Delmer DP (2002) Cellulase synthase (CesA) genes in the green alga Mesotaenium caldariorum. Euk Cell 1:847–855

    Article  CAS  Google Scholar 

  • Saade A, Bowler C (2009) Molecular tools for discovering the secrets of diatoms. BioScience 59:757–769

    Article  Google Scholar 

  • Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lideboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  CAS  PubMed  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senechal F, Wattier C, Rusterucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structures, expression, and roles in plants. J Exp Bot 65:5125–5160

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoenwaelder MEA, Wiencke C (2000) Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol 2:24–33

    Article  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Shroeder DC, Biggi GF, Hall M, Davy J, Martinez JM, Richardson AJ, Malin G, Wilson WH (2005) A genetic marker to separate Emiliania huxleyi (Prymnesiophyceae) morphotypes. J Phycol 41:874–879

    Article  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Sørensen I, Domozych DS, Willats WGT (2010) How have plant cells evolved? Plant Physiol 153:366–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211

    Article  PubMed  CAS  Google Scholar 

  • Sørensen I, Fei Z, Andreas A, Willats WGT, Domozych DS, Rose JKC (2013) Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophycean green algae, the immediate ancestors of land plants. Plant J 77:339–351

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Williamson RE, Wastenys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture and growth rate in intact roots of Arabidopsis. Plant Phys 124:1493–1506

    Article  CAS  Google Scholar 

  • Sumper M, Hallmann A (1998) Biochemistry of the extracellular matrix of Volvox. Int Rev Cytol 180:51–85

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Eberhard S, Pattahil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    Article  CAS  PubMed  Google Scholar 

  • Taylor AR, Russell MA, Harper GM, Collins TFT, Brownlee C (2007) Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp. brarudii. Eur J Phycol 42:125–136

    Article  Google Scholar 

  • Terauchi M, Nagasat C, Kajimura N, Mineyuki Y, Okuda K, Katsaros C, Motomura T (2012) Ultrastructural study of plasmodesmata in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Planta 236:1013–1026

    Article  CAS  PubMed  Google Scholar 

  • Tesson B, Hildebrand M (2010) Extensive and intimate association of the cytoskeleton with forming silica in diatoms: control over patterning on the meso- and micro-scale. PLoS One 5(12):e14300. doi:10.1371/journal.pone.0014300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tesson B, Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One 8(4):e61675. doi:10.1371/journal.pone.0061675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PLoS One 7:e29696. doi:10.1371/journal.pone.0029696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsekos I (1981) Growth and differentiation of the golgi apparatus and wall germination during carposporogenesis in the red alga, Gigartina teedii (Roth) Lamour. J Cell Sci 52:71–84

    CAS  PubMed  Google Scholar 

  • Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655

    Article  CAS  Google Scholar 

  • Ulvskov P, Paiva DS, Domozych D, Harholt J (2013) Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLoS One. 8(10):e76511 doi:10.1371/journal.pone.0076511

    Google Scholar 

  • Vannerum K, Abe J, Sekimoto H, Inzé D, Vyverman W (2010) Intracellular localization of an endogenous cellulose synthase of Micrasterias denticulata (Desmidiales, Chlorophyta) by means of transient genetic transformation. J Phycol 46:839–845

    Article  CAS  Google Scholar 

  • Vannerum K, Hiysman MJJ, De Rycke R, Vuylsteke M, Leliaert F, Pollier J, Lutz-Meindl U, Gillard J, De Veylder L, Goossens A, Inze D, Vyverman W (2011) Transcriptional analysis of cell growth and morphogenesis in the unicellular green alga Micrasterias (Streptophyta), with emphasis on the role of expansin. BMC Plant Biol 11:128. doi:1471-2229/11/128

    Google Scholar 

  • Vannerum K, De Rycke R, Pollier J, Goosens A, Inze D, Vyverman W (2012) Characterization of a RABE (RAS gene from rat brain E) GTPase expressed during morphogenesis in the unicellular green alga Micrasterias denticulata (Zygnematophyceae, Streptophyta). J Phycol 48:682–692

    Article  CAS  Google Scholar 

  • Verhaeghe EF, Fraysse A, Guerquin-Kern JL, Wu TD, Deves G, Mioskowski C, Leblanc C, Ortega R, Ambroise Y, Potin P (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269

    Article  CAS  PubMed  Google Scholar 

  • Vierkotten L, Simon A, Becker B (2004) Preparation and characterization of protoplasts obtained from the prasinophyte Scherffelia dubia (Chlorophyta). J Phycol 40:1106–1111

    Article  Google Scholar 

  • Voight J, Frank R (2003) 14-3-3 proteins are constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall. Plant Cell 15:1399–1413

    Article  CAS  Google Scholar 

  • Wallace IS, Anderson CT (2012) Small molecule probes for plant polysaccharide imaging. Front Plant Sci 3:89. doi:10.3389/fpls.2012.00089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willats WGT, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of ß-glucosyl Yariv reagent with seedlings of Arabidopsis. Plant J 9:919–925

    Article  CAS  PubMed  Google Scholar 

  • Woessner JP, Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181:245–258

    Article  Google Scholar 

  • Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249:S169–S175

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  PubMed  Google Scholar 

  • Worden N, Esteva Esteve V, Domozych DS, Drakakaki G (2015) Using chemical genetics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum. In: Estevez JM (ed) Plant cell expansion: methods and protocols. Humana Press, New York, pp 23–39

    Google Scholar 

  • Xia X, Lei L, Brabham C, Stork J, Strickland J, Ladak A, Gu Y, Wallace I, DeBolt S (2014) Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting. PLoS One 9(4):e95245. doi:10.1371/journal.pone.0095245

    Article  PubMed  PubMed Central  Google Scholar 

  • Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins- a new hypothetical model. Carbohydr Polym 86:373–385

    Article  CAS  Google Scholar 

  • Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol 9:99 doi:10.1186/1471-2229-9-99

    Google Scholar 

  • Zabotina O, Malm E, Drakakaki G, Bulone V, Raikhel N (2008) Identification and preliminary characterization of new chemical affecting glucosyltransferase activities involved in plant cell wall biosynthesis. Mol Plant 1:977–989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation (NSF) grants NSF-MCB-0919925 and NSF-MRI-0922805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Domozych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domozych, D.S. (2016). Biosynthesis of the Cell Walls of the Algae. In: Borowitzka, M., Beardall, J., Raven, J. (eds) The Physiology of Microalgae. Developments in Applied Phycology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-24945-2_2

Download citation

Publish with us

Policies and ethics