Skip to main content
Log in

Growth control by cell wall pectins

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plant cell growth is controlled by the balance between turgor pressure and the extensibility of the cell wall. Several distinct classes of wall polysaccharides and their interactions contribute to the architecture and the emergent features of the wall. As a result, remarkable tensile strength is achieved without relinquishing extensibility. The control of growth and development does not only require a precisely regulated biosynthesis of cell wall components, but also constant remodeling and modification after deposition of the polymers. This is especially evident given the fact that wall deposition and cell expansion are largely uncoupled. Pectins form a functionally and structurally diverse class of galacturonic acid-rich polysaccharides which can undergo abundant modification with a concomitant change in physicochemical properties. This review focuses on homogalacturonan demethylesterification catalyzed by the ubiquitous enzyme pectin methylesterase (PME) as a growth control module. Special attention is drawn to the recently discovered role of this process in primordial development in the shoot apical meristem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayers AR, Valent B, Ebel J, Albersheim P (1976) Host–pathogen interactions: XI. Composition and structure of wall-released elicitor fractions. Plant Physiol 57(5):766–774

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222. doi:10.1146/annurev.cellbio.20.082503.103053

    Article  PubMed  CAS  Google Scholar 

  • Bellincampi D, Cardarelli M, Zaghi D, Serino G, Salvi G, Gatz C, Cervone F, Altamura MM, Costantino P, Lorenzo GD (1996) Oligogalacturonides prevent rhizogenesis in rolB-transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8(3):477–487

    PubMed  CAS  Google Scholar 

  • Bonin CP, Potter I, Vanzin GF, Reiter WD (1997) The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci USA 94(5):2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17(12):3219–3226. doi:10.1105/tpc.105.037473

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223(4):736–745

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138(3):1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Boudaoud A (2010) An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15(6):353–360. doi:10.1016/j.tplants.2010.04.002

    Article  PubMed  CAS  Google Scholar 

  • Branca C, Lorenzo GD, Cervone F (1988) Competitive inhibition of the auxin-induced elongation by α-D-oligogalacturonides in pea stem segments. Physiol Plant 72(3):499–504

    Article  CAS  Google Scholar 

  • Burton RA, Gibeaut DM, Bacic A, Findlay K, Roberts K, Hamilton A, Baulcombe DC, Fincher GB (2000) Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12(5):691–706

    PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344(14):1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Cameron RG, Luzio GA, Goodner K, Williams MAK (2008) Demethylation of a model homogalacturonan with a salt-independent pectin methylesterase from citrus: I. Effect of pH on demethylated block size, block number and enzyme mode of action. Carbohydr Polym 71(2):287–299

    Article  CAS  Google Scholar 

  • Cameron RG, Luzio GA, Vasu P, Savary BJ, Williams MA (2011) Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from Citrus: 1. Nanostructural characterization, enzyme mode of action, and effect of pH. J Agric Food Chem 59(6):2717–2724

    Article  PubMed  CAS  Google Scholar 

  • Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DT, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105(6):2226–2231

    Article  PubMed  CAS  Google Scholar 

  • Catoire L, Pierron M, Morvan C, du Penhoat CH, Goldberg R (1998) Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR spectroscopy. Implications In cell wall expansion. J Biol Chem 273(50):33150–33156

    Article  PubMed  CAS  Google Scholar 

  • Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20(1):25–35

    Article  PubMed  CAS  Google Scholar 

  • Clausen MH, Willats WG, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338(17):1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  PubMed  CAS  Google Scholar 

  • Davis KR, Darvill AG, Albersheim P, Dell A (1986) Host–pathogen interactions: XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. Plant Physiol 80(2):568–577

    Article  PubMed  CAS  Google Scholar 

  • Denes JM, Baron A, Renard CM, Pean C, Drilleau JF (2000) Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydr Res 327(4):385–393

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31

    Article  PubMed  Google Scholar 

  • Dick-Perez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000

    Article  PubMed  CAS  Google Scholar 

  • Domozych DS, Serfis A, Kiemle SN, Gretz MR (2007) The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum. Protoplasma 230(1–2):99–115

    Article  PubMed  CAS  Google Scholar 

  • Eder M, Lutz-Meindl U (2008) Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 231(2):201–214

    Article  PubMed  CAS  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1(9):296–301. doi:10.1016/s1360-1385(96)88175-0

    Google Scholar 

  • Fayant P, Girlanda O, Chebli Y, Aubin CE, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22(8):2579–2593

    Article  PubMed  CAS  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276(5317):1415–1418. doi:10.1126/science.276.5317.1415

    Article  CAS  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142(3):1004–1013

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Ortega JK (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14(9):467–478. doi:10.1016/j.tplants.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  • Gout E, Aubert S, Bligny R, Rebeille F, Nonomura AR, Benson AA, Douce R (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123(1):287–296

    Article  PubMed  CAS  Google Scholar 

  • Hahn MG, Darvill AG, Albersheim P (1981) Host–pathogen interactions: XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68(5):1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322(5908):1650–1655. doi:10.1126/science.1165594

    Article  PubMed  CAS  Google Scholar 

  • His I, Driouich A, Nicol F, Jauneau A, Hofte H (2001) Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-beta-glucanase. Planta 212(3):348–358

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17(2):584–596

    Article  PubMed  CAS  Google Scholar 

  • Kerstens S, Decraemer WF, Verbelen JP (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127(2):381–385

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2(2):74–78

    Article  PubMed  Google Scholar 

  • Lamport DT, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of the extensin superfamily in primary cell wall architecture. Plant Physiol 156(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Li YQ, Moscatelli A, Cai G, Cresti M (1997) Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. Int Rev Cytol 176:133–199

    Article  PubMed  CAS  Google Scholar 

  • Manfield IW, Orfila C, McCartney L, Harholt J, Bernal AJ, Scheller HV, Gilmartin PM, Mikkelsen JD, Paul Knox J, Willats WG (2004) Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J 40(2):260–275

    Article  PubMed  CAS  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21(10):3026–3040

    Article  PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Yasumori M, Imai T, Naito S, Matsunaga T, Oda H, Hayashi H, Chino M, Fujiwara T (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115(3):901–906

    Article  PubMed  CAS  Google Scholar 

  • O'Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294(5543):846–849. doi:10.1126/science.1062319

    Article  PubMed  Google Scholar 

  • Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220(4):582–592

    Article  PubMed  CAS  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Hofte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18(24):1943–1948

    Article  PubMed  CAS  Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Hofte H (2011a) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21(20):1720–1726

    Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Salsac F, Morin H, Fournet F, Belcram K, Gillet F, Hofte H, Laufs P, Mouille G, Pelloux J (2011b) The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis. Development 138(21):4733–4741

    Article  PubMed  CAS  Google Scholar 

  • Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou JP, Hofte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188(3):726–739

    Article  PubMed  CAS  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12(6):267–277. doi:10.1016/j.tplants.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260. doi:10.1038/nature02081

    Article  PubMed  CAS  Google Scholar 

  • Rockel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53(1):133–143

    Article  PubMed  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446(7132):199–202. doi:10.1038/nature05618

    Article  PubMed  CAS  Google Scholar 

  • Shea EM, Gibeaut DM, Carpita NC (1989) Structural analysis of the cell walls regenerated by carrot protoplasts. Planta 179(3):293–308. doi:10.1007/bf00391074

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211

    Article  PubMed  CAS  Google Scholar 

  • Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA 103(13):5236–5241

    Article  PubMed  CAS  Google Scholar 

  • Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294(1):83–91. doi:10.1016/j.ydbio.2006.02.026

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Chun J-P, Huber DJ (2000) Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiol Plant 108(4):345–352

    CAS  Google Scholar 

  • Wakabayashi K, Hoson T, Huber DJ (2003) Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. J Plant Physiol 160(6):667–673

    Article  PubMed  CAS  Google Scholar 

  • Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47(1–2):9–27

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2(5):851–860

    Article  PubMed  CAS  Google Scholar 

  • Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64(4):657–667

    Article  PubMed  CAS  Google Scholar 

  • Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334(2):437–446

    Article  PubMed  CAS  Google Scholar 

  • Zhang GF, Staehelin LA (1992) Functional compartmentation of the Golgi apparatus of plant cells: immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol 99(3):1070–1083

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to those colleagues whose work could not be cited due to space constraints. SW is recipient of a research fellowship from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

Conflict of interest

The authors hereby declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Greiner.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, S., Greiner, S. Growth control by cell wall pectins. Protoplasma 249 (Suppl 2), 169–175 (2012). https://doi.org/10.1007/s00709-011-0371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0371-5

Keywords

Navigation