Skip to main content
Log in

Volvocine cell walls and their constituent glycoproteins: An evolutionary perspective

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Similarities in the composition of the extracellular matrix suggest that only some species of the unicellularChlamydomonas are closely related to the colonial and multicellular flagellated members of the family Volvocaceae. The cell walls from all of the algae in this volvocine group contain a crystalline layer. This lattice structure can be used as a phylogenetic marker to divideChlamydomonas species into distinct classes, only one of which includes the volvocacean algae. Similarly, not all species ofChlamydomonas are sensitive to each other's cell wall lytic enzymes, implying divergence of the enzyme's inner wall substrate. Interspecific reconstitution of the crystalline layer is possible betweenC. reinhardtii and the multicellularVolvox carteri, but not betweenC. reinhardtii andC. eugametos. The hydroxyproline-rich glycoproteins (HRGPs) which make up the crystalline layer in genera which have a similar crystal structure exhibit many homologies. Interestingly, the evolutionarily distant cell walls ofC. reinhardtii andC. eugametos also contain some HRGPs displaying a few morphological and amino acid sequence homologies. The morphological similarities between the flagellar agglutinins (HRGPs responsible for sexual recognition and adhesion during the mating reaction) and the cell wall HRGPs leads to the proposal of a superfamily from which novel HRGPs (designed for self-assembly/recognition) can constantly evolve. Just as variations in the wall HRGPs can lead to unique wall structures, new agglutinins facilitate sexual isolation of new species. Thus, the HRGPs could emerge as valuable phylogenetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GLE:

gametic lytic enzyme

GP:

glycoprotein

HRGP:

hydroxyproline-rich glycoprotein

SDS PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

VLE:

vegetative lytic enzyme

VSP:

vegetative serine/proline-rich

WP:

wall protein

ZSP:

zygotic serine/proline-rich

References

  • Adair WS (1985) Characterization ofChlamydomonas sexual agglutinins. J Cell Sci [Suppl] 2: 233–260

    Google Scholar 

  • —, Appel H (1989) Identification of a highly conserved hydroxyproline-rich glycoprotein in the cell walls ofChlamydomonas reinhardtii and two other Volvocales. Planta 179: 381–386

    Google Scholar 

  • —, Apt KE (1990) Cell wall regeneration inChlamydomonas: accumulation of mRNAs encoding cell wall HRGPs. Proc Natl Acad Sci USA 87: 7355–7359

    Google Scholar 

  • —, Snell WJ (1990) TheChlamydomonas reinhardtii cell wall: structure, biochemistry, and molecular biology. In: Adair WS, Mecham RP (eds) Organization and assembly of plant and animal extracellular matrix. Academic Press, San Diego, pp 15–84

    Google Scholar 

  • —, Steinmetz SA, Mattson DM, Goodenough UW, Heuser JE (1987) Nucleated assembly ofChlamydomonas andVolvox cell walls. J Cell Biol 105: 2373–2382

    Google Scholar 

  • Buchheim MA, Chapman RL (1991) Phylogeny of the colonial green flagellates: a study of 18 S and 26 S rRNA sequence data. BioSystems 25: 85–100

    Google Scholar 

  • —, Turmel M, Zimmer EA, Chapman RL (1990) Phylogeny ofChlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18 S rRNA sequence data. J Phycol 26: 689–699

    Google Scholar 

  • Cavalier-Smith T (1976) Electron microscopy of zygospore formation inChlamydomonas reinhardtii. Protoplasma 87: 297–315

    Google Scholar 

  • Claes H (1971) Autolyse der Zellwand bei den Gameten vonChlamydomonas reinhardtii. Arch Mikrobiol 78: 180–188

    Google Scholar 

  • Cooper JB, Adair WS, Mecham RP, Heuser JE, Goodenough UW (1983)Chlamydomonas agglutinin is a hydroxyproline-rich glycoprotein. Proc Natl Acad Sci USA 80: 5898–5901

    Google Scholar 

  • Epstein L, Lamport DTA (1984) An intramolecular linkage involving isodityrosine in extensin. Phytochemistry 23: 1241–1246

    Google Scholar 

  • Ertl H, Mengele R, Wenzl S, Engel J, Sumper M (1989) The extracellular matrix ofVolvox carteri: molecular structure of cellular compartment. J Cell Biol 109: 3493–3501

    Google Scholar 

  • —, Hallmann A, Wenzl S, Sumper M (1992) A novel extensin that may organize extracellular matrix biogenesis inVolvox carteri. EMBO 111: 2055–2062

    Google Scholar 

  • Ettl H (1976) Die GattungChlamydomonas Ehrenberg. Nova Hedwigia 49: 1–1122

    Google Scholar 

  • Ferris PJ, Goodenough UW (1987) Transcription of novel genes, including a gene linked to the mating-type locus, induced byChlamydomonas fertilization. Mol Cell Biol 7: 2360–2366

    Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37: 165–186

    Google Scholar 

  • Goodenough UW (1985) An essay on the origins and evolution of eukaryotic sex. In: Halvorson HO, Monroy A (eds) The origin and evolution of sex. AR Liss, New York, pp 123–140

    Google Scholar 

  • — (1991)Chlamydomonas mating interactions. In: Dworkin M (ed) Microbial cell-cell interactions. American Society for Microbiology, Washington, DC, pp 71–112

    Google Scholar 

  • —, Heuser JE (1985) TheChlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze deep-etch technique. J Cell Biol 101: 1550–1568

    Google Scholar 

  • — (1988 a) Molecular organization of cell-wall crystals fromChlamydomonas reinhardtii andVolvox carteri. J Cell Sci 90: 717–733

    Google Scholar 

  • — (1988 b) Molecular organization of the cell wall and cell-wall crystals fromChlamydomonas eugametos. J Cell Sci 90: 735–750

    Google Scholar 

  • —, Gebhart B, Mecham RP, Heuser JE (1986 a) Crystals of theChlamydomonas reinhardtii cell wall: polymerization, depolymerization, and purification of glycoprotein monomers. J Cell Biol 103: 403–417

    Google Scholar 

  • —, Adair WS, Collin-Osdoby P, Heuser JE (1986 b)Chlamydomonas cells in contact. In: Gall E, Edelman GM (eds) Cells in contact. Wiley, New York, pp 111–135

    Google Scholar 

  • Grief C, O'Neill MA, Shaw PJ (1987) The zygote cell wall ofChlamydomonas reinhardtii: a structural, chemical, and immunological approach. Planta 170: 433–445

    Google Scholar 

  • Harris EH (1989) TheChlamydomonas sourcebook. Academic Press, San Diego

    Google Scholar 

  • Hills GJ (1973) Cell wall assembly in vitro fromChlamydomonas reinhardtii. Planta 115: 17–23

    Google Scholar 

  • —, Phillips JM, Gay MR, Roberts K (1975) Self-assembly of a plant cell wall in vitro. J Mol Biol 96: 431–444

    Google Scholar 

  • Holst O, Christoffel V, Frund R, Moll H, Sumper M (1989) A phosphodiester bridge between two arabinose residues as a structural element of an extracellular glycoprotein ofVolvox carteri. Eur J Biochem 181: 345–350

    Google Scholar 

  • Imam SH, Snell WJ (1988) TheChlamydomonas cell wall degrading enzyme, lysin, acts on two domains within the framework of the wall. J Cell Biol 106: 2211–2221

    Google Scholar 

  • Kieliszewski M, Lamport DTA (1994) Extensin: repetitive motifs, functional motifs, post-translational codes and phylogeny. Plant J 5: 157–172

    Google Scholar 

  • —, Leykam JF, Lamport DTA (1990) Structure of the threoninerich extensin fromZea mays. Plant Physiol 92: 316–326

    Google Scholar 

  • —, de Zacks R, Leykam JF, Lamport DTA (1992) A repetitive proline-rich protein from the gymnosperm Douglas Fir is a hydroxyproline-rich glycoprotein. Plant Physiol 98: 919–926

    Google Scholar 

  • Kirk DL, Birchem R, King N (1986) The extracellular matrix ofVolvox: a comparative study and proposed system of nomenclature. J Cell Sci 80: 207–231

    Google Scholar 

  • Lamport DTA (1977) Structure, biosynthesis, and significance of cell wall glycoproteins. Rec Adv Phytochem 11: 79–115

    Google Scholar 

  • Larson A, Kirk MM, Kirk DL (1992) Molecular phylogeny of the volvocine flagellates. Mol Biol Evol 9: 85–105

    Google Scholar 

  • Matsuda Y, Musgrave A, van den Ende H, Roberts K (1987) Cell walls of algae in the Volvocales: their sensitivity to a cell wall lytic enzyme and labeling with an anti-cell wall glycopeptide ofChlamydomonas reinhardtii. Bot Mag 100: 373–384

    Google Scholar 

  • Minami S, Goodenough UW (1978) Novel glycopolypeptide synthesis induced by gametic cell fusion inChlamydomonas reinhardtii J Cell Biol 77: 165–181

    Google Scholar 

  • Monk BC (1988) The cell wall ofChlamydomonas reinhardtii gametes: composition, structure and autolysin-mediated shedding and dissolution. Planta 176: 441–450

    Google Scholar 

  • Musgrave A, van Eijk E, te Welscher R, Broekman R, Lens PF, Homan WL, van den Ende H (1991) Sexual agglutination factor fromChlamydomonas eugametos. Planta 153: 362–369

    Google Scholar 

  • Rausch H, Larsen N, Schmitt R (1989) Phylogenetic relationships of the green algaVolvox carteri deduced from small-subunit ribosomal RNA comparisons. J Mol Evol 29: 255–265

    Google Scholar 

  • Raz R, José M, Moya A, Martinez-Izquierdo JA, Puigdomènech P (1992) Different mechanisms generating sequence variability are revealed in distinct regions of the hydroxyproline-rich glycoprotein gene from maize and related species. Mol Gen Genet 233: 252–259

    Google Scholar 

  • Roberts K (1974) Crystalline glycoproteins of algae: their structure, composition, and assembly. Philos Trans R Soc Lond [Biol] 268: 129–146

    Google Scholar 

  • — (1981) Visualizing an insoluble glycoprotein. Micron 12: 185–186

    Google Scholar 

  • —, Hills GJ, Shaw P (1982) Structure of algal cell walls. In: Harris JR (eds) Electron microscopy of proteins, vol 3. Academic Press, New York, pp 1–40

    Google Scholar 

  • —, Grief C, Hills J, Shaw PJ (1985 a) Cell wall glycoproteins: structure and function. J Cell Sci [Suppl] 2: 105–127

    Google Scholar 

  • —, Phillips J, Shaw P, Grief C, Smith E (1985 b) An immunological approach to the plant cell wall. In: Brett CT, Hillman JR (eds) Biochemistry of plant cell walls. Cambridge University Press, New York, pp 125–154

    Google Scholar 

  • Samson MR, Klis FM, Homan WL, van Egmond P, Musgrave A, van den Ende H (1987) Composition and properties of the sexual agglutinins of the flagellated green algaeChlamydomonas eugametos. Planta 170: 314–321

    Google Scholar 

  • Schlösser UG (1966) Enzymatisch gesteuerte Freisetzung von Zoosporea beiChlamydomonas reinhardtii dangeard in Synchronkultur. Arch Mikrobiol 54: 129–159

    Google Scholar 

  • — (1976) Entwicklungsstadien-und sippenspezifische Zellwand-Lysine bei der Freisetzung von Fortpflanzungszellen in der GattungChlamydomonas. Ber Deutsch Bot Ges 89: 1–56

    Google Scholar 

  • — (1984) Species-specific sporangium autolysins (cell-wall dissolving enzymes) in the genusChlamydomonas. In: Irvine DEG, John D (eds) The systematics of green algae. Academic Press, London, pp 409–418

    Google Scholar 

  • Schmitt R, Fabry S, Kirk DL (1992) In search of molecular origins of cellular differentiation inVolvox and its relatives. Int Rev Cytol 139: 189–265

    Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5: 9–23

    Google Scholar 

  • Su X, Kaska DD, Gibor A (1990) Induction of cytosine-rich poly (A)+ RNAs inChlamydomonas reinhardtii by cell wall removal. Exp Cell Res 187: 54–58

    Google Scholar 

  • Van den Ende H, Klis FM, Musgrave A (1988) The role of flagella in sexual reproduction ofChlamydomonas eugametos. Acta Bot Neerl 37: 327–350

    Google Scholar 

  • Varner JE, Lin L-S (1989) Plant cell wall architecture. Cell 56: 231–239

    Google Scholar 

  • Waffenschmidt S, Spessert R, Jaenicke L (1988) Oligosaccharide side chains are essential for cell wall lysis inChlamydomonas reinhardtii. Planta 175: 513–519

    Google Scholar 

  • Waffenschmidt S, Woessner JP, Beer K, Goodenough UW (1993) Isodityrosine cross-linking mediates cell wall insolubilization inChlamydomonas. Plant Cell 5: 809–820

    Google Scholar 

  • Woessner JP, Goodenough UW (1989) Molecular characterization of a zygote wall protein: an extensin-like molecule inChlamydomonas reinhardtii. Plant Cell 1: 901–911

    Google Scholar 

  • — (1992) Zygote and vegetative cell wall proteins inChlamydomonas reinhardtii share a common epitope, (SerPro)x. Plant Sci 83: 65–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woessner, J.P., Goodenough, U.W. Volvocine cell walls and their constituent glycoproteins: An evolutionary perspective. Protoplasma 181, 245–258 (1994). https://doi.org/10.1007/BF01666399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666399

Keywords

Navigation