Skip to main content

Plasma Torches for Cutting, Welding and PTA Coating

Handbook of Thermal Plasmas

Abstract

Plasma cutting, plasma welding, and plasma transferred arc coating represents one of the most established groups of thermal plasma technologies which are used worldwide on an industrial scale. Their main advantages are in the precision and speed of the cut over relatively thick plates and the cleanliness and quality of the welds and coatings. Plasma torches used for cutting and welding are generally of relatively low power, 10 to 40 kW. Their design is based on the use of a hot cathode, operating in a transferred arc mode, with the part to be cut or welded acting as the anode to make use of the high heat fluxes associated with anode root arc attachments. Cutting and welding torches differ, however, in their performance objectives and accordingly in the nature of the plasma gas used. Cutting torches tend to use essentially oxidizing gases at high flow rates in order to enhance the cutting efficiency and get rid of metal dross, while welding torches use inert or reducing atmosphere in order to avoid contamination of the weld spot with debris of metal oxide. Plasma torches used for PTA coating also operate in the transferred arc mode to create a pool of molten metal at the coating location in which the coating materials in the form of a fine powder are uniformly dispersed. Once the molten metal cools and freezes, it creates a metal matrix composite coating, which is often used in hard facing or rebuilding of worn-off parts.

E. Pfender deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC-GMAW:

Alternating current–gas metal arc welding

CA-TIG:

Cap active flux tungsten inert gas

CMT:

Cold metal transfer

DE-GMAW:

Double-electrode gas metal arc welding

ESW:

Electroslag welding

FCAW:

Flux-cored arc welding

GMAW:

Gas metal arc welding

GTAW:

Gas tungsten arc welding

ISPC:

International Symposium on Plasma Chemistry

ITSC:

International Thermal Spray Conference

LCHW:

Laser-CMT hybrid welding

LHS:

Left-hand side

LSHW:

Laser-standard short-circuiting arc welding

MAG:

Metal active gas

MIG:

Metal inert gas welding

NTSC:

National Thermal Spray Conference

PAW:

Plasma arc welding

PCTIG:

Pulsed current tungsten inert gas welding

PTA:

Plasma transferred arc

PWHT:

Post-weld heat treatment

RHS:

Right-hand side

SAW:

Submerged arc welding

TIG:

Tungsten inert gas for welding

UTSC:

United Thermal Spray Conference

Abbreviations

Aconv :

Area over which the convective heat transfer takes place (m2)

cp :

Specific heat at constant pressure (J/kg.K)

dz :

Torch-to-substrate (anode) distance (m)

D:

Arc attachment spot diameter (m)

E:

Electric field (V/m)

EI :

Ionization potential of the plasma gas (eV)

Gθ :

Axial flux of angular momentum (kg m/s)

GZ :

Axial flux of axial momentum (kg m/s)

I:

Arc current (A)

je :

Electron’s current density (A/m2)

ji :

Ion’s current density (A/m2)

k:

Constriction parameter (cm−2)

kB :

Boltzmann constant (kB = 1.38 10−23 J/K)

ke :

Thermal conductivity of electrons (W/m.K)

kh :

Thermal conductivity of heavy species (W/m.K)

\( {\dot{m}}_{\mathrm{p}} \) :

Plasma gas flow rate (kg/s)

qa :

Heat flux received by the anode (W/m2)

qe :

Electron enthalpy flux (W/m2)

qm :

Maximum heat flux (W/m2)

q(r):

Substrate heat flux (W/m2)

Qan :

Heat transfer to the anode (W)

QHCL :

Heat conduction losses inside the workpiece (W)

Qlost-dow :

Losses beneath the plate in the extinguishing arc (W)

Qlost-up :

Losses above the plate mainly due to radiation and convection (W)

Qmelt :

Power involved in melting steel (W)

Qoxy :

Power released from iron oxidation (W)

QR :

Heat transfer by radiation (W/m2)

r:

Radial coordinate (m)

re :

Arc radius (m)

rn :

Characteristic radius (mm)

Sw :

Swirl number \( \left({\mathrm{S}}_{\mathrm{w}}=\frac{{\mathrm{G}}_{\uptheta}}{{\mathrm{r}}_{\mathrm{n}}{\mathrm{G}}_{\mathrm{z}}}\right) \)

Te :

Electron’s temperature (K)

Th :

Heavy species temperature (K)

v:

Specific velocity (m/s)

V:

Arc voltage (V)

Van :

Anode fall voltage (V)

α:

Fraction of the electrical power transferred to the anode by convection and radiation

δ:

Melted layer thickness (m)

Φ a :

Work function of the anode material (eV)

κ:

Thermal conductivity (W/m K)

ρ:

Mass density (kg/m3)

\( \overline{\upsigma_{\mathrm{Ar}}} \) :

Electrical conductivity of argon averaged over the arc cross section (A/V.m)

References

  • American Welding Society (2004). Welding handbook, welding processes, part 1. Miami, American Welding Society. isbn:0-87171-729-8.

    Google Scholar 

  • Arif N, Chung H (2015) Alternating current-gas metal arc welding for application to thick plates. J Mater Process Technol 222:75–83

    Article  Google Scholar 

  • Bach F-W, Zühlsdorf J (1999) Plasma powder welding under raised pressure environment. In: Lugscheider E and Kammer P (eds) Proceedings of the UTSC. DVS, Düsseldorf, pp 757–760

    Google Scholar 

  • Bini R, Monno M, Boulos MI (2007) Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem Plasma Process 27:359–380

    Article  Google Scholar 

  • Bini R, Colosimo BM, Kutlu AE, Monno M (2008) Experimental study of the features of the kerf generated by a 200 A high tolerance plasma arc cutting system. J Mater Process Technol 196:345–355

    Article  Google Scholar 

  • Boselli M, Colombo V, Ghedini E, Gherardi M, Rotundo F, Sanibondi P (2013) High-speed imaging investigation of transient phenomena impacting plasma arc cutting process optimization. J Phys D Appl Phys 46:224010. (10pp)

    Article  Google Scholar 

  • Bouaifi B, Reichmann B (1997) Neue Anwendungsfelder durch die Entwicklung des Hochleistungs-Plasma-Pulverauftragschweiβens. Schweissen und Schneiden 49:734–736

    Google Scholar 

  • Bouaifi B, Schreiber F, Göllner J, Schulze S (1996) Eigenschaften und Beständigkeit von Plasma-Pulver-Auftragschweißungen aus hartstoffverstärkten CrNiMoN-legierten Duplex-Stählen. DVS-Berichte 175:425–428

    Google Scholar 

  • Bouaifi B, Ait-Mekideche A, Gebert A, Wocilka D (2001) Nutzung von stickstoffhaltigen Hochtemperaturplasmen zum reaktiven beschichten mittels Plasmaauftragschweiβen. Schweiss Schneid 53:478–482

    Google Scholar 

  • Cary HB, Helzer SC (2005) Modern Welding Technology. Upper Saddle River: Pearson Education. isbn:0-13-113029-3

    Google Scholar 

  • Casalino G, Mortello M, Leo P, Benyounis KY, Olabi AG (2014) Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy. Mater Design 61:191–198

    Article  Google Scholar 

  • Chamarthi S, Sinivasa Reddy N, Kumar Elipey M, Reddy DVR (2013) Investigation analysis of plasma arc cutting parameters on the Unevenness surface of Hardox-400 material. In: Procedia engineering, international conference on design and manufacturing, IConDM-2013, vol 64, pp 854–861

    Google Scholar 

  • Chau SW, Lu SY, Wang PJ (2011) Modeling of axis-symmetric steam plasma flow in a non-transferred torch. Comput Phys Commun 182:152–154

    Article  MATH  Google Scholar 

  • Chen J-C, Pan C-X (2011) Welding of Ti-6Al-4V alloy using dynamically controlled plasma arc welding process. Trans Nonferrous Metals Soc China 2:1506–1512

    Article  Google Scholar 

  • Colombo V, Ghedini E, Sanibondi P (2008) Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Prog Nucl Energy 50:921–933

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2009) High-speed imaging in plasma arc cutting: a review and new developments (topical review). Plasma Sources Sci Technol 18:023001. (24pp)

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Rotundo F, Dallavalle S (2010) Experimental analysis of the behavior of high current electrodes in plasma arc cutting during first cycles. Plasma Sources Sci Technol 19:065023. (9pp)

    Article  Google Scholar 

  • Colombo V, Concetti A, Ghedini E, Dallavalle S (2011) Design oriented simulation for plasma arc cutting consumables and experimental validation of results. Plasma Sources Sci Technol 20:035010. (10pp)

    Article  Google Scholar 

  • Cressault Y, Gleizes A (2004) Thermodynamic properties and transport coefficients in Ar–H2–cu plasmas. J Phys D Appl Phys 37:560–572

    Article  Google Scholar 

  • Cressault Y, Gleizes A (2007) Calculation of combined diffusion coefficients for Ar/Cu, Ar/He and Ar/Fe mixtures ISPC-18, Kyoto, 26–31 Aug, 30 P-6:84

    Google Scholar 

  • Cressault Y, Gleizes A (2010) Calculation of diffusion coefficients in air–metal thermal plasmas. J Phys D Appl Phys 43:434006. (6pp)

    Article  Google Scholar 

  • Cressault Y, Gleizes A (2013) Thermal plasma properties for Ar–al, Ar–Fe and Ar–cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure. J Phys D Appl Phys 46:415206

    Article  Google Scholar 

  • Cressault Y, Gleizes A, Riquel G (2012) Properties of air–aluminum thermal plasmas. J Phys D Appl Phys 45:265202

    Article  Google Scholar 

  • Cressault Y, Murphy AB, Teulet P, Gleizes A, Schnick M (2013) Thermal plasma properties for Ar–cu, Ar–Fe and Ar–al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure. J Phys D Appl Phys 46:415207. (27pp)

    Article  Google Scholar 

  • D’Oliveira CM, Paredes RS, Santos RL (2005) Pulsed current plasma transferred arc hardfacing. J Mater Process Technol 171:167–174

    Article  Google Scholar 

  • Dassanayake MS, Etemadi K (1989) Thermodynamic and transport properties of an aluminum–nitrogen plasma mixture. J Appl Phys 66:5240–5244

    Article  Google Scholar 

  • Davies AC (2003) The science and practice of welding. Cambridge University Press. isbn:0-521-43566-8.

    Google Scholar 

  • Deli J, Bo Y (2011) An intelligent control strategy for plasma arc cutting technology. J Manuf Process 13:1–7

    Article  Google Scholar 

  • Deuis RL, Yellup JM, Subramanian C (1998) Metal-matrix composite coatings by PTA surfacing. Compos Sci Technol 58:299–309

    Article  Google Scholar 

  • Dilthey U, Ellermeier J, Gladkij P, Pavlenko AV (1993) Kombiniertes Plasma-Pulver-Auftragschweissen. Schweissen und Schneiden 45(5):241–244

    Google Scholar 

  • Dilthey U, Kabatnik L, Lugscheider E, Schlimbach K, Langer G (1999) Möglichkeiten zur Steigerung der Oberflächenfestigkeit bei Aluminiumlegierungen mit Plasma-Pulver-Schweiβverfahren (Improving of the wear resistance of aluminum alloys by plasma transferred arc welding). Mat-wiss u Werkstofttech 30(11):697–702

    Article  Google Scholar 

  • Dilthey U, Kondapalli S, Balashow B, Riedel F (2008) Improving wear resistance of aluminium alloys by developing FTC and TiC based composite coatings using plasma powered arc welding process. Surf Eng 24(1):75–80

    Article  Google Scholar 

  • Ducos M (1985) Applications industrielles des plasmas d’arc de faible puissance et des plasmas inductifs, Rechargement par plasma à arc transferré, in Les Plasmas dans l'industrie. Dopée/85, EDF France (in French)

    Google Scholar 

  • DuMola RJ, Heath GR (1997) New developments in the plasma transferred arc process. In: Berndt CC (ed) Proceedings of the UTSC, Indianapolis, IN. ASM International, Materials Park, OH, pp 427–434

    Google Scholar 

  • DuPont JN (1998) On optimization of the powder plasma arc surfacing process. Metall Mater Trans B 29B:932–934

    Article  Google Scholar 

  • Ebert L, Thurner S, Neyka S (2009) Beeinflussung der Hartstoffverteilung beim plasma-Pulver-Auftragschweiβen, influencing the distribution of reinforcing particles in plasma transfer arc welding. Mater Werkst 40(12):878–881

    Article  Google Scholar 

  • Eliot D (1991) Technologie et spécificité du découpage par plasma dans “les plasmas dans l’industrie”. Dopée Avon, France, 229–241 (in French)

    Google Scholar 

  • Evrard M, Blanchet B (1970) Etudes des plasmas d’arc du point de vue du soudage. Soudages Tech Connexes 7:261–298. (in French)

    Google Scholar 

  • Feng J, Li L, Chen Y, Lei Z, Qin H, Li Y (2012) Effects of welding velocity on the impact behavior of droplets in gas metal arc welding. J Mater Process Technol 212:2163–2172

    Article  Google Scholar 

  • Finch R (1997) Welder’s handbook: a complete guide to MIG, TIG, arc & oxyacetylene welding New York HP Books, 2nd edn. isbn:ISBN-13: 007-5478012640 ISBN-10: 1557882649

    Google Scholar 

  • Finch R (2017) Welder’s handbook: a guide to plasma cutting, oxyacetylene, ARC, MIG and TIG welding. Penguin Putnam, New York

    Google Scholar 

  • Freton P, Gonzalez JJ, Gleizes A, Camy Peyret F, Caillibotte G, Delzenne M (2002) Numerical and experimental study of a plasma-cutting torch. J Phys D Appl Phys 35:115–131

    Article  Google Scholar 

  • Freton P, Gonzalez JJ, Camy Peyret F, Gleizes A (2003) Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch. J Phys D Appl Phys 36:1269–1283

    Article  Google Scholar 

  • Gao M, Zeng X, Hu Q (2007) Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J Mater Process Technol 184:177–183

    Article  Google Scholar 

  • Gariboldi E, Previtali B (2005) High tolerance plasma arc cutting of commercially pure titanium. J Mater Process Technol 160:77–89

    Article  Google Scholar 

  • Gatto A, Bassoli E, Fornari M (2004) Plasma transferred arc deposition of powdered high performance alloys: process parameters optimisation as a function of alloy and geometrical configuration. Surf Coat Technol 187:265–271

    Article  Google Scholar 

  • Gebert A, Bouaifi B (2005) Oberflächenschutz durch Auftragschweiβen. Wiley, Moderne Beschichtungsverfahren

    Google Scholar 

  • Gebert A, Wocilka D, Bouaifi B Schütz M (2002) Wear and corrosion prevention at light metals by means of welding methods. In: Lugscheider E (ed) Proceedings of the ITSC, Essen. DVS, Düsseldorf, pp 268–272

    Google Scholar 

  • Ghorui S, Heberlein JVR, Pfender E (2007) Non-equilibrium modelling of an oxygen-plasma cutting torch. J Phys D Appl Phys 40:1966–1976

    Article  Google Scholar 

  • Girard L, Ph T, Razafinimanana M, Gleizes A, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: I spectroscopic analysis of the plasma jet. J Phys D Appl Phys 39:1543–1556

    Article  Google Scholar 

  • Guo S, Zhou Q, Guo W, Xu P (2010) Computational analysis of a double nozzle structure plasma cutting torch. Plasma Chem Plasma Process 30:121–140

    Article  Google Scholar 

  • Hallen H, Lugscheider E, Ait-Mekideche A (1991) Plasma transferred arc surfacing with high deposition rates. In: Bernecki T (ed) Proceedings of the 4th NTSC, Pittsburgh. ASM International, Materials Park, Ohio, pp 537–539

    Google Scholar 

  • Hallen H, Mathesius H, Ait-Mekideche A, Hettiger F, Morkramer U, Lugscheider E (1992) New applications for high power PTA surfacing in the steel industry. In: Berndt CC (ed) Proceedings of the ITSC, Orlando. ASM International, Materials Park, Ohio, pp 899–902

    Google Scholar 

  • Heberlein J (2007) Observations on thermionic cathode erosion. In: 1st international round table on thermal plasmas, Sharm El Sheikh

    Google Scholar 

  • Heberlein J, Mentel J, Pfender E (2007) The anode region of electric arcs – a survey. J Phys D Appl Phys 43:023001

    Article  Google Scholar 

  • Hirata Y (2011) Plasma physics promotes progress of arc welding processes. In: 3rd international round table on thermal plasmas, Glenburn Lodge, Johannesburg, 31stOct–4th Nov

    Google Scholar 

  • Hsu KC, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301

    Article  Google Scholar 

  • Hügel H, Schinzel C (2004) In: Webb CE, Julian DC (eds) Handbook of laser technology and applications, Applications, part D, welding, vol 3. Institute of Physics, Bristol

    Chapter  Google Scholar 

  • llen H, Mathesius H, Ait-Mekideche A, Hettiger F, Morkramer U, Lugscheider E (1992) New applications for high power PTA surfacing in the steel industry. In: Berndt CC (ed) Proc. ITSC Orlando, Florida, (Pub.) ASM Inter, Materials Park, OH, pp 899–902

    Google Scholar 

  • Ibrahim IA, Mohamat SA, Amir A, Ghalib A (2012) The effect of gas metal arc welding (GMAW) processes on different welding parameters. Procedia Eng 41:1502–1506

    Article  Google Scholar 

  • Jenista J, Heberlein J, Pfender E (1997a) Model for anode heat transfer from an electric arc. Proc. 4th. International Thermal Plasma Processes Conference, Athens, Greece, 1997 (ed). P. Fauchais Begell House Inc., New York, NY, pp 805–815

    Google Scholar 

  • Jenista J, Heberlein J, Pfender E (1997b) Numerical model of the anode region of high-current electric arcs. IEEE Trans Plasma Sci 25(5):883–890

    Article  Google Scholar 

  • Jia C-B, Wu C-S, Zhang Y-M (2009) Sensing controlled pulse key-holing condition in plasma arc welding. Trans Nonferrous Metals Soc China 19:341–346

    Article  Google Scholar 

  • Jian X, Wu CS (2015) Numerical analysis of the coupled arc–weld pool–keyhole behaviors in stationary plasma arc welding. Int J Heat Mass Transf 84:839–847

    Article  Google Scholar 

  • Just C, Badisch E, Wosik J (2010) Influence of welding current on carbide/matrix interface properties in MMCs. J Mater Process Technol 210:408–414

    Article  Google Scholar 

  • Kammer P, Weinstein AM, DuMola RJ (1991) Characteristics and applications for composite wear-resistant overlays. In: Bernecki T (ed) Proceedings of the 4th. NTSC, Pittsburgh. ASM International, Materials Park, Ohio, pp 513–518

    Google Scholar 

  • Karadeniz E, Ozsarac U, Yildiz C (2007) The effect of process parameters on penetration in gas metal arc welding processes. Mater Design 28:649–656

    Article  Google Scholar 

  • Karanunakarani N, Balasubramanian V (2011) Effect of pulsed current on temperature distribution, weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints. Trans Nonferrous Metals Soc China 21:278–286

    Article  Google Scholar 

  • Kavka T, Maslani A, Hrabovsky M, Pauser G, Stehrer T (2011) Experimental study of effect of gas nature on plasma arc cutting of mild steel. In: 3rd international round table on thermal plasmas, Glenburn Lodge, Johannesburg, 31 Oct–04 Nov

    Google Scholar 

  • Kavka T, Chumak O, Sonsky J, Heinrich M, Stehrer T, Pauser H (2013) Experimental study of anode processes in plasma arc cutting. J Phys D Appl Phys 46(2013):065202. (11pp)

    Article  Google Scholar 

  • Krajcarz D (2014) Comparison metal water jet cutting with laser and plasma cutting. Procedia Eng 69:838–843. 24th DAAAM Inter. Symp. on Intelligent Manufacturing and Automation, 2013

    Article  Google Scholar 

  • Lakshminarayanan AK, Balasubramanian V, Varahamoorthy R, Babu S (2008) Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology. Met Mater Int 14(6):779–789

    Article  Google Scholar 

  • Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21(4):417–423

    Article  Google Scholar 

  • Leylavergne M, Valetoux H, Coudert JF, Fauchais P, Leroux V (1998) Comparison of the behaviour of copper, cast iron and aluminum alloy substrates heated by a plasma transferred arc. In: Coddet C (ed) Proceedings of the 15th ITSC, Nice. ASM International, Materials Park, Ohio, pp 489–495

    Google Scholar 

  • Li G, Zhang C, Gao M, Zeng X (2014) Role of arc mode in laser-metal active gas arc hybrid welding of mild steel. Mater Des 61:239–250

    Article  Google Scholar 

  • Lindland D, Shubert G (1988) Method for applying a weld bead to a thin section of a substrate. US Patent 4,739,146

    Google Scholar 

  • Liu L, Chen M (2011) Interactions between laser and arc plasma during laser–arc hybrid welding of magnesium alloy. Opt Lasers Eng 49:1224–1231

    Article  Google Scholar 

  • Liu L, Hao X (2009) Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy. Opt Lasers Eng 47:1177–1182

    Article  Google Scholar 

  • Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30:2033–2042

    Article  Google Scholar 

  • Lowke JJ, Tanaka M, Ushio M (2005) Mechanisms giving increased weld depth due to a flux. J Phys D Appl Phys 38(18):3438–3445

    Article  Google Scholar 

  • Lu Y, Chen SJ, Shi Y, Li X, Chen J, Kvidahl L, Zhang YM (2014) Double-electrode arc welding process: Principle, variants, control and developments. J Manuf Process 16:93–108

    Article  Google Scholar 

  • Lugscheider E, Langer G, Schlimbach K, Dilthey U, Kabatnik L (1999) Possibilites for improving wear-properties of Aluminum-alloys by plasma powder welding process. In: Lugscheider Kammer P (eds) Proceedings of the UTSC. DVS, Düsseldorf, pp 410–413

    Google Scholar 

  • Martin C, Nemchinsky VA, Severance WS (2013) Measurements of power of oxidation reaction during plasma arc cutting of steel with an oxygen plasma. J Phys D Appl Phys 46:224014. (3pp)

    Article  Google Scholar 

  • Maslani A, Sember V, Steherer T, Pauser H (2013) Measurement of temperature in the steam arcjet during plasma arc cutting. Plasma Chem Plasma Process 33:593–604

    Article  Google Scholar 

  • Matthes K-J, Alaluss K (1996) Formgebendes Plasma-Pulverauftragschweissen mit Impulslichtbogen unter Beachtung minimaler Verformung. Schweissen und Schneiden 48(9):668–672

    Google Scholar 

  • Matthes K-J, Alaluss K, Riedel F (2002) Nutzung der Finite-Elemente-Methode zur Optimierung des formgebenden Pulver-Plasmaauftragschweissens für die Herstellung hoch beanspruchbarer Umformwerkzeuge. Schweissen und Schneiden 54(4):178–184

    Google Scholar 

  • Menart JA (1996) Theoretical and experimental investigations of radiative and total heat transfer in thermal plasmas. PhD thesis, University of Minnesota, Minnesota

    Google Scholar 

  • Miller Electric (2012) Guidelines for gas metal arc welding (GMAW). Appleton, WI: Miller Electric

    Google Scholar 

  • Mirapeix J, Cobo A, Conde OM, Jauregui C, Lopez-Higuera JM (2006) Real-time arc welding defect detection technique by means of plasma spectrum optical analysis. NDT&E Int 39:356–360

    Article  Google Scholar 

  • Momber AW, Kovacevic R (1997) Test parameter analysis in abrasive jet cutting of rocklike materials. Int J Rock Mech Min Sci 34(1):17–25

    Article  Google Scholar 

  • Morisada YI, Fujii H, Xukun N (2014) Development of simplified active flux tungsten inert gas welding for deep penetration. Mater Des 54:526–530

    Article  Google Scholar 

  • Murphy AB (2010) The effects of metal vapor in arc welding. J Phys D Appl Phys 43:434001. (31pp)

    Article  Google Scholar 

  • Murphy AB (2011a) Understanding the arc plasma in arc welding: recent progress and outstanding issues. In: 3rd round table on thermal. Glenburn Lodge, Johannesburg, 31–4 Oct–Nov 2011

    Google Scholar 

  • Murphy AB (2011b) A self-consistent three-dimensional model of the arc, electrode and weld pool in gas–metal arc welding. J Phys D Appl Phys 44:194009. (11pp)

    Article  Google Scholar 

  • Murphy AB (2013) Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys 46:224004. (10pp)

    Article  Google Scholar 

  • Murphy AB, Tanaka M, Tashiro S, Sato T, Lowke JJ (2009) A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. J Phys D Appl Phys 42:115205. (14pp)

    Article  Google Scholar 

  • Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Lowke JJ, Ostrikov K (2010) Modelling of arc welding: the importance of including the arc plasma in the computational domain. Vacuum 85:579–584

    Article  Google Scholar 

  • Nemchinsky VA (1998) Plasma flow in a nozzle during plasma arc cutting. J Phys D Appl Phys 31:3102–3107

    Article  Google Scholar 

  • Narimanyan A (2009) Unilateral conditions modeling the cut front during plasma cutting: FEM solution. Appl Math Model 33:176–197

    Article  MathSciNet  MATH  Google Scholar 

  • Nemchinsky VA (2002) Cathode erosion rate in high-pressure arcs influence of swirling gas flow. IEEE Trans Plasma Sci 30:2113–2116

    Article  Google Scholar 

  • Nemchinsky VA (2005) Anode layer in a high-current arc in atmospheric pressure nitrogen. J Phys D Appl Phys 38(2005):4082–4089

    Article  Google Scholar 

  • Nemchinsky V (2012) Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc. J Phys D Appl Phys 45:135201. (8pp)

    Article  Google Scholar 

  • Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys 39:R423–R438

    Article  Google Scholar 

  • Nemchinsky VA, Showalter MS (2003) Cathode erosion rate in high-pressure arcs influence of swirling gas flow. J Phys D Appl Phys 36:704–712

    Article  Google Scholar 

  • Nestor OH (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J Appl Phys 33(5):1638–1648

    Article  Google Scholar 

  • Ono M, Shinbo Y, Yoshitake A, Ohmura M (2002) Development of laser-arc hybrid Welding. NKK Tech Rev 86:8–12

    Google Scholar 

  • Osterhouse DJ, Lindsay JW, Heberlein JVR (2013) Using arc voltage to locate the anode attachment in plasma arc cutting. J Phys D Appl Phys 46:224013. (7pp)

    Article  Google Scholar 

  • Paul E (2011) Plasma cutting handbook, (pub.) HP books 1569. Penguin group, New York

    Google Scholar 

  • Peters J, Yin F, Borges CFM, Heberlein J, Hackett C (2005) Erosion mechanisms of hafnium cathodes at high current. J Phys D Appl Phys 38:1781–1794

    Article  Google Scholar 

  • Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960–3971

    Article  Google Scholar 

  • Peters J, Bartlett B, Lindsay J, Heberlein J (2008) Relating spectroscopic measurements in a plasma cutting torch to cutting performance. Plasma Chem Plasma Process 28:331–352

    Article  Google Scholar 

  • Petković D, Nikolić V, Milovančvié M, Lazov L (2016) Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique. Infrared Phys Technol 77:12–15

    Article  Google Scholar 

  • Phi Long N, Katada Y, Tanaka Y, Uesugi Y, Yamaguchi Y (2012) Cathode diameter and operating parameter effects on hafnium cathode evaporation for oxygen plasma cutting arc. J Phys D Appl Phys 45:435203. (14pp)

    Article  Google Scholar 

  • Phi Long N, Tanaka Y, Uesugi Y, Yamaguchi Y (2013) Numerical investigation of the effect of cathode holder shape on hafnium cathode evaporation for an oxygen plasma cutting arc. J Phys D Appl Phys 46:224012. (10pp)

    Article  Google Scholar 

  • Praveen P, Yarlagadda PKDV (2005) Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding. J Mater Process Technol 164–165:1106–1112

    Article  Google Scholar 

  • Praveen P, Yarlagadda PKDV, Kang MJ (2005) Advancements in pulse gas metal arc welding. J Mater Process Technol 164–165:1113–1119

    Article  Google Scholar 

  • Proner A, Dacquet JP, Rouanet R (1997a) In: Fauchais P (ed) The plasma high energy: a new hardfacing technique. Begell House, Inc., New York, pp 787–794

    Google Scholar 

  • Proner A, Ducos M, Dacquet JP (1997b) Process for coating of hardfacing a part by means of a plasma tranferred arc. US Patent US 5,624,717

    Google Scholar 

  • Razal RA, Manisekar K, Balasubramanian V, Rajakumar S (2012) Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy. Mater Des 37(2012):334–348

    Article  Google Scholar 

  • Renault T, De Laurentis C, Uhlig P (2011) A plasma cutting limitation: cut piece dimension. In: 3rd international round table on thermal plasmas, Glenburn Lodge, Johannesburg, 31st Oct–4th Nov 2011

    Google Scholar 

  • Roepke C, Liu S, Kelly S, Martukanitz R (2010) Hybrid laser arc welding process evaluation on DH36 and EH36 steel. Weld J 89:140s–150s

    Google Scholar 

  • Rotundo F, Martini C, Chiavari C, Ceschini L, Concetti A, Ghedini E, Colombo V, Dallavalle S (2012) Plasma arc cutting: microstructural modifications of hafnium cathodes during first cycles. Mater Chem Phys 134:858–866

    Article  Google Scholar 

  • Salonitis K, Vatousianos S (2012) Experimental investigation of the plasma arc cutting process. In: Procedia CIRP 3. 45th CIRP conference on manufacturing systems

    Google Scholar 

  • Saltzman G., Sahoo P (1991) Applications of plasma arc weld surfacing in turbine engines. In: Berndt CC (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh. ASM International, Materials Park, pp 541–548

    Google Scholar 

  • Saltzmann GA, Wertz TA Friedman IL (1989) Method for refurbishing cast gas turbine engine components and refurbished component. US Patent 4,878,953

    Google Scholar 

  • Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy AB (2010) Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission. J Phys D Appl Phys 43:022001. (5pp)

    Article  Google Scholar 

  • Schreiber F, Krefeld D (2002) Mobile plasma powder hand deposition welding: practice experience. In: Lugscheider E (ed) Proceedings of the international thermal spray conference. DVS, Essen/Düsseldorf, 4–6 March 2002, pp 273–277

    Google Scholar 

  • Sember V, Maslani A, Krenek P, Heinrich M, Nimmervoll R, Pauser H, Hrabovsky M (2011) Spectroscopic characterization of a steam arc cutting torch. Plasma Chem Plasma Process 31:755–770

    Article  Google Scholar 

  • Shubert GC (1987) Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon. US Patent 4,689,463

    Google Scholar 

  • Sun J, Wu CS, Feng Y (2011) Modeling the transient heat transfer for the controlled pulse key-holing process in plasma arc welding. Int J Therm Sci 50:1664–1671

    Article  Google Scholar 

  • Sung Je Kim (2009) Fluid dynamic instabilities in plasma arc cutting. Dissertation, University of Minnesota, 127 pages

    Google Scholar 

  • Tanaka M, Lowke JJ (2007) Topical review, predictions of weld pool profiles using plasma physics. J Phys D Appl Phys 40:R1–R23

    Article  Google Scholar 

  • Tashiro S, Zeniya T, Yamamoto K, Tanaka M, Nakata K, Murphy AB, Yamamoto E, Yamazaki K, Suzuki K (2010) Numerical analysis of fume formation mechanism in arc welding. J Phys D Appl Phys 43:434012. (12pp)

    Article  Google Scholar 

  • Teulet P, Girard L, Razafinimanana M, Gleizes A, Bertrand P, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: II. Arc–material interaction, energy transfer and anode attachment. J Phys D Appl Phys 39:1557–1573

    Article  Google Scholar 

  • Toropchin A, Frolov V, Pipa AV, Kozakov R, Uhrlandt D (2014) Influence of the arc plasma parameters on the weld pool profile in TIG welding. J Phys Conf Ser 550:012004

    Article  Google Scholar 

  • Valetoux H. (1998) Experimental approach of the phenomena implied in transferred arc plasma cutting. Contribution to the study of instabilities and thermal transfer (in French). PhD thesis, University of Limoges, France

    Google Scholar 

  • Wahba M, Mizutani M, Katayama S (2015) Hybrid welding with fiber laser and CO2 gas shielded arc. J Mater Process Technol 221:146–153

    Article  Google Scholar 

  • Wang H, Jiang W, Valant M, Kovacevic R (2003) Microplasma powder deposition as a new solid freeform fabrication process. Proc Inst Mech Eng 2003:1641–1650

    Article  Google Scholar 

  • Wang W, Qian SQ, Zhou XY (2009) Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process. Trans Nonferrous Metals Soc China 19:1180–1184

    Article  Google Scholar 

  • Wang H-X, Chen X, Li H-P (2011) Modeling on the momentum and heat/mass transfer characteristics of an argon plasma jet issuing into air surroundings and interacting with a counter-injected argon jet. Plasma Chem Plasma Process 31:373–392

    Article  Google Scholar 

  • Wang J, Zhu Z, He C, Yang F (2011) Effect of dual swirling plasma arc cutting parameters on kerf characteristics. Int J Mater Form 4:39–43

    Article  Google Scholar 

  • Wassermann R, Quaas J, Chalard J-C, Noel L, Steine H-T (1978) Installation for surfacing using plasma-arc welding. US Patent 4,125,754

    Google Scholar 

  • Wilden J, Bergmann JP, Frank H, Pinzl S, Schrieber F (2004) Thin plasma-transferred-arc welded coatings – an alternative to thermally sprayed coatings? In: A Ohmori (ed) Proceedings of the ITSC-2004, Osaka. ASM International, Materials Park, OH, pp 556–561

    Google Scholar 

  • Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding-modeling and experimental optimization. J Therm Spray Technol 15(4):779–784

    Article  Google Scholar 

  • Wu S, Xiao R (2015) Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospheric pressure argon and helium. Opt Laser Technol 67:169–175

    Article  Google Scholar 

  • Wu CS, Wang L, Ren WJ, Zhang XY (2014) Plasma arc welding: process, sensing, control and modeling. J Manuf Process 16:74–85

    Article  Google Scholar 

  • Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy AB (2008) Metal vapor behavior in thermal plasma of gas tungsten arcs during welding. Sci Technol Weld Join 13:566–572

    Article  Google Scholar 

  • Yang G, Heberlein J (2008) Anode heat transfer by electron current and electron conduction in an atmospheric pressure argon arc. In: Jemmaa NB (ed) Proceedings of the international conference on electrical contacts. Universite de Rennes, Saint Malo, pp 313–316

    Google Scholar 

  • Yoshioka S, Miyazaki T, Kimura T, Komatsu A, Kinoshita N (1993) Thin-plate welding by a high-power density small diameter plasma arc. Ann ClRP 42(1):215–218

    Article  Google Scholar 

  • Young RM, Chyou YP, Fleck E, Pfender E (1983) An experimental arc plasma reactor for the synthesis of refractory materials. In: Boulos MI and Munz RJ (eds) Proceedings of the ISPC-6, Montreal. International Union of Pure and Applied Chemistry, pp 211–218

    Google Scholar 

  • Zhang YM, Zhang SB (1999) Observation of the keyhole during plasma arc welding. Weld J 78:53s–58s

    Google Scholar 

  • Zhang G, Wu CS, Liu X (2015) Single vision system for simultaneous observation of keyhole and weld pool in plasma arc welding. J Mater Process Technol 215:71–78

    Article  Google Scholar 

  • Zhou Q, Li H, Liu F, Guo S, Guo W, Xu P (2008) Effects of nozzle length and process parameters on highly constricted oxygen plasma cutting arc, plasma chem. Plasma Process 28:729–747

    Article  Google Scholar 

  • Zhou Q, Yin H, Li H, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P (2009a) The effect of plasma-gas swirl flow on a highly constricted plasma cutting arc. J Phys D Appl Phys 42:095208

    Article  Google Scholar 

  • Zhou Q, Li H, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P (2009b) Comparative study of turbulence models on highly constricted plasma cutting arc. J Phys D Appl Phys 42:015210

    Article  Google Scholar 

  • Zielinska S, Valensi F, Pellerin N, Pellerin S, Musioła K, de Izarra Ch, Briand F (2009) Microstructural analysis of the anode in gas metal arc welding (GMAW). J Mater Process Technol 209:3581–3591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Boulos, M.I., Fauchais, P., Pfender, E. (2017). Plasma Torches for Cutting, Welding and PTA Coating. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12183-3

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Plasma Torches for Cutting, Welding and PTA Coating
    Published:
    18 October 2022

    DOI: https://doi.org/10.1007/978-3-319-12183-3_47-2

  2. Original

    Plasma Torches for Cutting, Welding and PTA Coating
    Published:
    01 June 2017

    DOI: https://doi.org/10.1007/978-3-319-12183-3_47-1