Skip to main content
Log in

Spectroscopic Characterization of a Steam Arc Cutting Torch

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Optical emission spectroscopy has been used to investigate the characteristics of a plasma jet produced by a steam arc cutting torch operated in air at atmospheric pressure. A procedure has been developed for simultaneous determination of temperature and pressure in the plasma jet as well as an effective nonequilibrium factor. It is based on comparison of a few experimental and simulated spectral quantities. The experimental data were obtained from the spectrum of Hβ and OII lines centred at 480 nm. The existence of the shock wave structure characteristic of an underexpanded jet can clearly be deduced from the measured properties. In the first expansion region, the centreline pressure drops from about 1.4 atm at the nozzle exit to about 0.7 atm a few tenths of millimeter downstream. On the contrary, the centreline temperature remains almost unchanged within this region and reaches the value of about 23,000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gage RM (1959) The principles of the modern arc torch. Weld J 38:959

    Google Scholar 

  2. Nemchinsky VA (1996) Liquid metal movement during plasma arc cutting. Weld J 75:S388

    Google Scholar 

  3. Ramakrishnan S, Rogozinsky MW (1997) Properties of electric arc plasma for metal cutting. J Phys D Appl Phys 30:636

    Article  ADS  Google Scholar 

  4. Pardo C, González-Aguilar J, Rodríguez-Yunta A, Calderón MAG (1999) Spectroscopic analysis of an air plasma cutting torch. J Phys D Appl Phys 32:2181

    Article  ADS  Google Scholar 

  5. González-Aguilar J, Pardo C, Rodríguez-Yunta A, Calderón MAG (1999) A theoretical study of a cutting air plasma torch. IEEE Trans Plasma Sci 27:264

    Article  ADS  Google Scholar 

  6. Freton P, Gonzalez JJ, Gleizes A, Camy Peyret F, Caillibotte G, Delzenne M (2002) Numerical and experimental study of a plasma cutting torch. J Phys D Appl Phys 35:115

    Article  ADS  Google Scholar 

  7. Freton P, Gonzalez JJ, Camy Peyret F, Gleizes A (2003) Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch. J Phys D Appl Phys 36:1269

    Article  ADS  Google Scholar 

  8. Girard L, Teulet Ph, Razafinimanana M, Gleizes A, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: I. Spectroscopic analysis of the plasma jet. J Phys D Appl Phys 39:1543

    Article  ADS  Google Scholar 

  9. Teulet P, Girard L, Razafinimanana M, Gleizes A, Bertrand P, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: II. Arc–material interaction, energy transfer and anode attachment. J Phys D Appl Phys 39:1557

    Article  ADS  Google Scholar 

  10. Ghorui S, Heberlein JVR, Pfender E (2007) Non-equilibrium modelling of an oxygen-plasma cutting torch. J Phys D Appl Phys 40:1966

    Article  ADS  Google Scholar 

  11. Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960

    Article  ADS  Google Scholar 

  12. Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2008) Understanding plasma fluid dynamics inside plasma torches through advanced modelling. IEEE Trans Plasma Sci 36:389

    Article  ADS  Google Scholar 

  13. Peters J, Bartlett B, Lindsay J, Heberlein J (2008) Relating spectroscopic measurements in a plasma cutting torch to cutting performance. Plasma Chem Plasma Process 28:331

    Article  Google Scholar 

  14. Zhou Q, Li H, Liu F, Guo S, Guo W, Xu P (2008) Effects of nozzle length and process parameters on highly constricted oxygen plasma cutting arc. Plasma Chem Plasma Process 28:729

    Article  Google Scholar 

  15. Pauser H, Heinrich M (2006) TransCut 300: Richtungswechsel beim mobilen Plasmaschneiden. Join-Ex Internationaler Fachkongress der Schweiss-und Verbindungstechnik. Wien, Austria

    Google Scholar 

  16. Pauser H, Laimer J, Stoeri H (1999) Steam plasma arc cutting. In: IEEE International conference on plasma science

  17. Yasutomo Y, Miyata K, Himeno SI, Enoto T, Ozawa Y (1981) A new numerical method for asymmetrical Abel inversion. IEEE Trans Plasma Sci 9:18

    Article  ADS  Google Scholar 

  18. Křenek P (2008) Thermophysical properties of H2O-Ar plasmas at temperatures 400–50,000 K and pressure 0.1 MPa. Plasma Chem Plasma Process 28:107

    Article  Google Scholar 

  19. Chase MW Jr (ed) (1998) NIST-JANAF thermochemical tables, 4th edn. J Phys Chem Ref Data Monogr 9. NIST, Gaithersburg

  20. Glushko VP (ed) (1978) Termodinamicheskie svoistva individualnych veshchestv, 3rd edn. Nauka, Moskva

    Google Scholar 

  21. Ralchenko Y, Kramida AE, Reader J, NIST ASD Team (2010) NIST atomic spectra database (version 4.0). National Institute of Standards and Technology, Gaithersburg. http://www.physics.nist.gov/asd

  22. Whiting EE (1968) An empirical approximation to Voigt profile. J Quant Spectrosc Radiat Transf 8:1379

    Article  ADS  Google Scholar 

  23. Miller M (1992) Basic concepts in atomic emission spectroscopy. In: Montaser A, Golightly DW (eds) Inductively coupled plasmas in analytical atomic spectrometry, 2nd edn, chapter 2, vol 55. VCH, New York, p 108

  24. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125

    Article  ADS  Google Scholar 

  25. Gigosos MA, Cardeñoso V (1996) New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. J Phys B At Mol Opt Phys 29:4795

    Article  ADS  Google Scholar 

  26. Drawin HW, Felenbok P (1965) Data for plasmas in local thermodynamic equilibrium. Gauthier-Villars, Paris

    Google Scholar 

  27. Vidal CR, Cooper J, Smith EW (1973) Hydrogen Stark-broadening tables. Astrophys J Suppl Ser 25:37

    Article  ADS  Google Scholar 

  28. Ashkenas H, Sherman F (1966) In: de Leeuw JH (ed) Rarefied gas dynamics 4, Academic, New York

  29. van de Sanden MCM, de Regt JM, Schram DC (1994) The behaviour of heavy particles in the expanding plasma jet in argon. Plasma Sources Sci Technol 3:501

    Article  ADS  Google Scholar 

  30. van de Sanden MCM, van de Bercken R, Schram DC (1994) The heating mechanism of electrons in the shock front of an expanding plasma. Plasma Sources Sci Technol 3:511

    Article  ADS  Google Scholar 

  31. Selezneva SE, Rajabian M, Gravelle D, Boulos MI (2001) Study of the structure and deviation from equilibrium in direct current supersonic plasma jets. J Phys D Appl Phys 34:2862

    Article  ADS  Google Scholar 

  32. Bartosiewicz Y, Proulx P, Mercadier Y (2002) A self-consistent two-temperature model for the computation of supersonic argon plasma jets. J Phys D Appl Phys 35:2139

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sember.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sember, V., Mašláni, A., Křenek, P. et al. Spectroscopic Characterization of a Steam Arc Cutting Torch. Plasma Chem Plasma Process 31, 755–770 (2011). https://doi.org/10.1007/s11090-011-9312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9312-5

Keywords

Navigation