Skip to main content
Log in

Effects of Nozzle Length and Process Parameters on Highly Constricted Oxygen Plasma Cutting Arc

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of nozzle length and two process parameters (arc current, mass flow rate) on the plasma cutting arc is investigated. Modeling results show that nozzle length and these two process parameters have essential effects on plasma arc characteristics. Long nozzle torch can provide high velocity plasma jet with high heat flux. Both arc voltage and chamber pressure increase with the nozzle length. High arc current increases plasma velocity and temperature, enhances heat flux and augments chamber pressure and thus, the shock wave. Strong mass flow has pinch effect on plasma arc inside the torch, enhances the arc voltage and power, therefore increases plasma velocity, temperature and heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D: Appl Phys 39:R423

    Article  ADS  Google Scholar 

  2. Freton P, Gonzalez JJ, Peyret FC, Glezes A (2003) Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch. J Phys D: Appl Phys 36:1269

    Article  ADS  Google Scholar 

  3. Ramakrishnan S, Rogozinski MW (1997) Properties of electric arc for metal cutting. J Phys D: Appl Phys 30:636

    Article  ADS  Google Scholar 

  4. Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A, Calderon MAG (1999) Spectroscopic analysis of an air plasma cutting torch. J Phys D: Appl Phys 32:2181

    Article  ADS  Google Scholar 

  5. Freton P, Gonzalez JJ, Gleizes A, Peyret FC, Caillibotte G, Delzenne M (2002) Numerical and experimental study of a plasma cutting torch. J Phys D: Appl Phys 35:115

    Article  ADS  Google Scholar 

  6. Girard L, Teulet Ph, Razafinimanana M, Gleizes A, Camy-Peyret F, Ballot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch. I. Spectroscopic analysis of the plasma jet. J Phys D: Appl Phys 39:1543

    Article  ADS  Google Scholar 

  7. Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D: Appl Phys 40:3960

    Article  ADS  Google Scholar 

  8. Ramakrishnan S, Gershenzon M, Polivka F, Kearny TN, Rogozinsky MW (1997) Plasma generation for the plasma cutting process. IEEE Trans Plasma Sci 25:937

    Article  ADS  Google Scholar 

  9. Nemchinsky VA (1998) Plasma flow in a nozzle during plasma arc cutting. J Phys D: Appl Phys 31:3102

    Article  ADS  Google Scholar 

  10. Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A, Calderon MAG (1999) A theoretical study of a cutting air plasma torch. IEEE Trans Plasma Sci 27:264

    Article  ADS  Google Scholar 

  11. Ghorui S, Heberlein JVR, Pfender E (2007) Non-equilibrium modelling of an oxygen-plasma cutting torch. J Phys D: Appl Phys 40:1966

    Article  ADS  Google Scholar 

  12. Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2008) Understanding plasma fluid dynamics inside plasma torches through advanced modeling. IEEE Trans Plasma Sci 36:389

    Article  ADS  Google Scholar 

  13. Patankar SV (1980) Numerical heat transfer and fluid flow. New York, McGraw-Hill

    MATH  Google Scholar 

  14. Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15:279

    Article  MathSciNet  Google Scholar 

  15. Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon–nitrogen, and argon–oxygen plasmas. Plasma Chem Plasma Process 14:451

    Article  Google Scholar 

  16. Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D: Appl Phys 41:183001

    Article  ADS  Google Scholar 

  17. Zhou Q, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P, Comparative study of turbulence models on highly constricted plasma cutting arc. J Phys D: Appl Phys (accepted)

  18. Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D: Appl Phys 35:2925

    Article  Google Scholar 

  19. Trelles JP, Pfender E, Heberlein J (2006) Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem Plasma Process 26:557

    Article  Google Scholar 

  20. Gonzalez JJ, Freton P, Gleizes A (2002) Comparisons between two- and three-dimensional models: gas injection and arc attachment. J Phys D: Appl Phys 35:3181

    Article  ADS  Google Scholar 

  21. Bini R, Monno M, Boulos MI (2006) Numerical and experimental study of transferred arcs in argon. J Phys D: Appl Phys 39:3253

    Article  ADS  Google Scholar 

  22. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1:1

    Article  ADS  MathSciNet  Google Scholar 

  23. Peters J, Yin F, Borges CFM, Heberlein J, Hackett C (2005) Erosion mechanisms of hafnium chathodes at high current. J Phys D: Appl Phys 38:1781

    Article  ADS  Google Scholar 

  24. Peters J, Bartlett B, Lindsay J, Heberlein J (2008) Relating spectroscopic measurements in a plasma cutting torch to cutting performance. Plasma Chem Plasma Process 28:331

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. A. B. Murphy from CSIRO Materials Science and Engineering, Australia for his helpful advice and thermodynamic and transport property data for oxygen plasma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianhong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Li, H., Liu, F. et al. Effects of Nozzle Length and Process Parameters on Highly Constricted Oxygen Plasma Cutting Arc. Plasma Chem Plasma Process 28, 729–747 (2008). https://doi.org/10.1007/s11090-008-9154-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9154-y

Keywords

Navigation