Skip to main content

Advertisement

Log in

Measurement of Temperature in the Steam Arcjet During Plasma Arc Cutting

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Spectroscopic measurements were performed by observing the plasma inside the kerf during cutting of stainless steel using direct current electric arc. Experiments were carried out on the plasma torch operated with the plasma gas composed of the vaporized mixture of water and ethanol; arc current was 60 A and cutting speed 30 cm/min. Emission spectral lines of neutral iron were used to experimental evaluation of the temperature of plasma in the kerf and close under the cut plate. Complicated nature of the plasma inside the kerf, including presence of metallic vapours and departures from equilibrium, was taken into account. Hence relatively reliable results were obtained, from which it was possible to get insight into the energy balance and cutting performance of the torch. Temperature of the plasma in the kerf was substantially lower than at the nozzle exit of the torch; however the temperature drop along the kerf was small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pardo C, González-Aguilar J, Rodríguez-Yunta A, Calderón MAG (1999) Spectroscopic analysis of an air plasma cutting torch. J Phys D Appl Phys 32:2181–2189

    Article  CAS  Google Scholar 

  2. Girard L, Teulet P, Razafinimanana M, Gleizes A, Camy-Peyret F, Baillot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: I. Spectroscopic analysis of the plasma jet. J Phys D Appl Phys 39:1543–1556

    Article  CAS  Google Scholar 

  3. Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostic in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960–3971

    Article  CAS  Google Scholar 

  4. Peters J, Bartlett B, Lindsay J, Heberlein J (2008) Relating spectroscopic measurements in a plasma cutting torch to cutting performance. Plasma Chem Plasma Process 28:331–352

    Article  CAS  Google Scholar 

  5. Sember V, Mašláni A, Křenek P, Heinrich M, Nimmervoll R, Pauser H, Hrabovský M (2011) Spectroscopic characterization of a steam arc cutting torch. Plasma Chem Plasma Process 31:755–770

    Article  CAS  Google Scholar 

  6. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001

    Article  Google Scholar 

  7. Valensi F, Pellerin S, Boutaghane A, Dzierzega K, Zielinska S, Pellerin N, Briand F (2010) Plasma diagnostics in gas metal arc welding by optical emission spectroscopy. J Phys D Appl Phys 43(43):4002

    Article  Google Scholar 

  8. Rouffet ME, Wendt M, Goett G, Kozakov R, Schoepp H, Weltmann KD, Uhrlandt D (2010) Spectroscopic investigation of the high-current phase of a pulsed GMAW process. J Phys D Appl Phys 43:434003

    Article  Google Scholar 

  9. Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy AB (2010) Modelling of gas-metal arc welding taking into account metal vapour. J Phys D Appl Phys 43:434008

    Article  Google Scholar 

  10. Schlussbericht AIF-Teilprojekt Untersuchungen zum Einsatz geregelt gepulster Lichtbögen zur Beeinflussung der Schmelzbaderstarrung, Füge- und Beschichtungstechnik, TU-Berlin, Institut für Inverse Modellierung IIM, Hochschule Lausitz, IGF-Nr.: 15.870 BG, Zeitraum: 01.11.2008—31.10.2011, http://idw-online.de/de/news479769

  11. Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43:023001

    Article  Google Scholar 

  12. Aragón C, Aguilera JA (2008) Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods. Spectrochim Acta B 63:893–916

    Article  Google Scholar 

  13. Yalcin S, Crosley DR, Smith GP, Faris GW (1999) Influence of ambient conditions on the laser air spark. Appl Phys B 68:121–130

    Article  CAS  Google Scholar 

  14. Aguilera JA, Aragón C (2007) Apparent excitation temperature in laser-induced plasmas. J Phys Conf Ser 59:210–217

    Article  CAS  Google Scholar 

  15. Kavka T, Chumak O, Šonský J, Heinrich M, Stehrer T, Pauser H (2013) Experimental study of anode processes in plasma arc cutting. J Phys D Appl Phys 43:434003

    Google Scholar 

  16. EN 10088, EN 10027-2

  17. Gonzalez JJ, Bouaziz M, Razafinimanana M, Gleizes A (1997) The influence of iron vapour on an argon transferred arc. Plasma Sources Sci Technol 6:20–28

    Article  CAS  Google Scholar 

  18. Aydin U, Roth P, Gehlen CD, Noll R (2008) Spectral line selection for time-resolved investigations of laser-induced plasmas by an iterative Boltzmann plot method. Spectrochim Acta B 63:1060–1065

    Article  Google Scholar 

  19. Zhang L, Kashiwakura S, Wagatsuma K (2011) Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas. Spectrochim Acta B 66:785–792

    Article  CAS  Google Scholar 

  20. Aragón C, Bengoechea J, Aguilera JA (2001) Influence of the optical depth on spectral line emission from laser-induced plasma. Spectrochim Acta B 56:619–628

    Article  Google Scholar 

  21. Sun L, Yu H (2009) Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Talanta 79:388–395

    Article  CAS  Google Scholar 

  22. Kramida A, Ralchenko Yu, Reader J and NIST ASD Team (2012) NIST Atomic Spectra Database (version 5.0), http://physics.nist.gov/asd

Download references

Acknowledgments

This work was supported by Fronius International GmbH, Austria and by the Grant Agency of the Czech Republic under the project GAP205/11/2070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mašláni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mašláni, A., Sember, V., Stehrer, T. et al. Measurement of Temperature in the Steam Arcjet During Plasma Arc Cutting. Plasma Chem Plasma Process 33, 593–604 (2013). https://doi.org/10.1007/s11090-013-9443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9443-y

Keywords

Navigation