Skip to main content

Chaperonin—Co-chaperonin Interactions

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

Co-chaperonins function together with chaperonins to mediate ATP-dependant protein folding in a variety of cellular compartments. GroEL and its co-chaperonin GroES are the only essential chaperones in Escherichia coli and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo structural rearrangements as part of the folding mechanism. GroES forms a lid over the chamber, and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances co-chaperonins display contrasting functions to those of chaperonins. Human Hsp60 continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10, in addition to its role as a co-chaperonin, on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ang D, Georgopoulos C (1989) The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds. J Bacteriol 171:2748–2755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ang D, Keppel F, Klein G, Richardson A, Georgopoulos C (2000) Genetic analysis of bacteriophage-encoded cochaperonins. Annu Revi Genet 34:439–456

    Article  CAS  Google Scholar 

  • Ang D, Richardson A, Mayer MP, Keppel F, Krisch H, Georgopoulos C (2001) Pseudo-T-even bacteriophage RB49 encodes CocO, a cochaperonin for GroEL, which can substitute for Escherichia coli’s GroES and bacteriophage T4’s Gp31. J Biol Chem 276:8720–8726

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM, Logsdon JM, Doolittle WF (1999) Recurrent paralogy in the evolution of archaeal chaperonins. Curr Biol 9:1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Athanasas-Platsis S, Somodevilla-Torres MJ, Morton H, Cavanagh AC (2004) Investigation of the immunocompetent cells that bind early pregnancy factor and preliminary studies of the early pregnancy factor target molecule. Immunol Cell Biol 82:361–369

    Article  CAS  PubMed  Google Scholar 

  • Azem A, Diamant S, Kessel M, Weiss C, Goloubinoff P (1995) The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Proc Natl Acad Sci U S A 92:12021–12025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barraclough R, Ellis RJ (1980) Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608:19–31

    Article  CAS  PubMed  Google Scholar 

  • Bertsch U, Soll J, Seetharam R, Viitanen PV (1992) Identification, characterization, and DNA sequence of a functional “double” groES-like chaperonin from chloroplasts of higher plants. Proc Natl Acad Sci U S A 89:8696–8700

    Google Scholar 

  • Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB (1996) The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol 3:170–177

    Article  CAS  PubMed  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  CAS  PubMed  Google Scholar 

  • Boudker O, Todd MJ, Freire E (1997) The structural stability of the co-chaperonin GroES. J Mol Biol 272:770–779.

    Article  CAS  PubMed  Google Scholar 

  • Braig K, Simon M, Furuya F, Hainfeld JF, Horwich AL (1993) A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc Natl Acad Sci U S A 90:3978–3982

    Google Scholar 

  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586

    Article  CAS  PubMed  Google Scholar 

  • Broadley SA, Vanags D, Williams B, Johnson B, Feeney D, Griffiths L, Shakib S, Brown G, Coulthard A, Mullins P, Kneebone C (2009) Results of a phase IIa clinical trial of an anti-inflammatory molecule, chaperonin 10, in multiple sclerosis. Mult Scler 15:329–336

    Article  CAS  PubMed  Google Scholar 

  • Bross P, Li Z, Hansen J, Hansen JJ, Nielsen MN, Corydon TJ, Georgopoulos C, Ang D, Lundemose JB, Niezen-Koning K, Eiberg H, Yang H, Kolvraa S, Bolund L, Gregersen N (2007) Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet 52:56–65

    Article  CAS  PubMed  Google Scholar 

  • Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Burston SG, Ranson NA, Clarke AR (1995) The origins and consequences of asymmetry in the chaperonin reaction cycle. J Mol Biol 249:138–152

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr (2007) Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci 1113:28–39

    Article  CAS  PubMed  Google Scholar 

  • Cappello F, Conway de Macario E, Marasa L, Zummo G, Macario AJ (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809

    Article  CAS  PubMed  Google Scholar 

  • Cappello F, Caramori G, Campanella C, Vicari C, Gnemmi I, Zanini A, Spanevello A, Capelli A, La Rocca G, Anzalone R, Bucchieri F, D’Anna SE, Ricciardolo FL, Brun P, Balbi B, Carone M, Zummo G, Conway de Macario E, Macario AJ, Di Stefano A (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PloS one 6:e28200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cappello F, Angileri F, de Macario EC, Macario AJ (2013) Chaperonopathies and chaperonotherapy. Hsp60 as therapeutic target in cancer: potential benefits and risks. Curr Pharm Des 19:452–457

    Article  CAS  PubMed  Google Scholar 

  • Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJ (2014) Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 18:185–208

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh AC (1996) Identification of early pregnancy factor as chaperonin 10: implications for understanding its role. Rev Reprod 1:28–32

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh AC, Morton H (1994) The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur J Biochem 222:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, Sikor M, Jiang G, Lamb DC, Hartl FU, Hayer-Hartl M (2010) Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:112–122

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986) Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem 261:12414–12419

    CAS  PubMed  Google Scholar 

  • Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235–246

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Sigler PB (1999) The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 99:757–768

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR (1994) Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371:261–264

    Article  CAS  PubMed  Google Scholar 

  • Chen DH, Song JL, Chuang DT, Chiu W, Ludtke SJ (2006) An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate. Structure 14:1711–1722

    Article  CAS  PubMed  Google Scholar 

  • Chen DH, Luke K, Zhang J, Chiu W, Wittung-Stafshede P (2008) Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-electron microscopy and biophysical techniques. J Mol Biol 381:707–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, Chiu W, Rye HS (2013) Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153:1354–1365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J, Fuchtbauer A, Fuchtbauer EM, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR (2012) ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 149:113–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colaco CA, MacDougall A (2014) Mycobacterial chaperonins: the tail wags the dog. FEMS Microbiol Lett 350:20–24

    Article  CAS  PubMed  Google Scholar 

  • Coluzza I, van der Vies SM, Frenkel D (2006) Translocation boost protein-folding efficiency of double-barreled chaperonins. Biophys J 90:3375–3381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJ, Cappello F, La Rocca G (2010) Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 86:145–152

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Heat shock protein 10 and signal transduction: a “capsula eburnea” of carcinogenesis? Cell Stress Chaperones 11:287–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David S, Bucchieri F, Corrao S, Czarnecka AM, Campanella C, Farina F, Peri G, Tomasello G, Sciume C, Modica G, La Rocca G, Anzalone R, Giuffre M, Conway De Macario E, Macario AJ, Cappello F, Zummo G (2013) Hsp10: anatomic distribution, functions, and involvement in human disease. Front Biosci (Elite Ed) 5:768–778

    Google Scholar 

  • Dobocan MC, Sadvakassova G, Congote LF (2009) Chaperonin 10 as an endothelial-derived differentiation factor: role of glycogen synthase kinase-3. J Cellular Physiol 219:470–476

    Article  CAS  Google Scholar 

  • Dubaquie Y, Looser R, Funfschilling U, Jeno P, Rospert S (1998) Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10. EMBO J 17:5868–5876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis RJ, Hartl FU (1996) Protein folding in the cell: competing models of chaperonin function. FASEB J 10:20–26

    CAS  PubMed  Google Scholar 

  • Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA (2012) The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 85:934–944

    Article  CAS  PubMed  Google Scholar 

  • Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenton WA, Horwich AL (2003) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36:229–256

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    Article  CAS  PubMed  Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418:207–211

    Article  CAS  PubMed  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    CAS  PubMed  Google Scholar 

  • Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F, Hennecke H (1993) One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontanella B, Birolo L, Infusini G, Cirulli C, Marzullo L, Pucci P, Turco MC, Tosco A (2010) The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding. Int J Biochem Cell Biol 42:641–650

    Article  CAS  PubMed  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  PubMed  Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11:4767–4778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29:1552–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Y, Thomas JO, Chow RL, Lee GH, Cowan NJ (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos CP, Hendrix RW, Kaiser AD, Wood WB (1972) Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly. Nat New Biol 239:38–41

    Article  CAS  PubMed  Google Scholar 

  • Goble JL, Johnson H, de Ridder J, Stephens LL, Louw A, Blatch GL, Boshoff A (2013) The druggable antimalarial target PfDXR: overproduction strategies and kinetic characterization. Protein Pept Lett 20:115–124

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989a) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–889

    Article  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989b) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  CAS  Google Scholar 

  • Gray TE, Fersht AR (1991) Cooperativity in ATP hydrolysis by GroEL is increased by GroES. FEBS Lett 292:254–258

    Article  CAS  PubMed  Google Scholar 

  • Guidry JJ, Shewmaker F, Maskos K, Landry S, Wittung-Stafshede P (2003) Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified. BMC Biochem 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Guisbert E, Herman C, Lu CZ, Gross CA (2004) A chaperone network controls the heat shock response in E. coli. Genes Dev 18:2812–2821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta P, Aggarwal N, Batra P, Mishra S, Chaudhuri TK (2006) Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Int J Biochem Cell Biol 38:1975–1985

    Article  CAS  PubMed  Google Scholar 

  • Hansen JJ, Bross P, Westergaard M, Nielsen MN, Eiberg H, Borglum AD, Mogensen J, Kristiansen K, Bolund L, Gregersen N (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Human Genet 112:71–77

    Article  CAS  Google Scholar 

  • Hansen J, Svenstrup K, Ang D, Nielsen MN, Christensen JH, Gregersen N, Nielsen JE, Georgopoulos C, Bross P (2007) A novel mutation in the HSPD1 gene in a patient with hereditary spastic paraplegia. J Neurol 254:897–900

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Martin J (1995) Molecular chaperones in cellular protein folding. Curr Opin Struct Biol 5:92–102

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21:293–322

    Article  CAS  PubMed  Google Scholar 

  • Hartman DJ, Surin BP, Dixon NE, Hoogenraad NJ, Hoj PB (1993) Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc Natl Acad Sci U S A 90:2276–2280

    Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  CAS  PubMed  Google Scholar 

  • Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hertveldt K, Lavigne R, Pleteneva E, Sernova N, Kurochkina L, Korchevskii R, Robben J, Mesyanzhinov V, Krylov VN, Volckaert G (2005) Genome comparison of Pseudomonas aeruginosa large phages. J Mol Biol 354:536–545

    Article  CAS  PubMed  Google Scholar 

  • Hill JE, Hemmingsen SM (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 6:190–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horovitz A, Willison KR (2005) Allosteric regulation of chaperonins. Curr Opin Struct Biol 15:646–651

    Article  CAS  PubMed  Google Scholar 

  • Horovitz A, Fridmann Y, Kafri G, Yifrach O (2001) Review: allostery in chaperonins. J Struct Biol 135:104–114

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Saibil HR (1998) The thermosome: chaperonin with a built-in lid. Nat Struct Biol 5:333–336

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–917

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  CAS  PubMed  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS, Coates AR (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45

    Article  CAS  PubMed  Google Scholar 

  • Hunt JF, Earnest TN, Bousche O, Kalghatgi K, Reilly K, Horvath C, Rothschild KJ, Engelman DM (1997) A biophysical study of integral membrane protein folding. Biochemistry 36:15156–15176

    Article  CAS  PubMed  Google Scholar 

  • Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954

    Google Scholar 

  • Jewett AI, Shea JE (2010) Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell Mol Life Sci 67:255–276

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Halilou AI, Hu L, Cai W, Liu J, Huang B (2011) Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides. Int J Biochem Mol Biol 2:47–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores Fde M, Vanags D, Naylor DJ, Hill GR, Suhrbier A (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman BA, Kolesar JE, Perlman PS, Butow RA (2003) A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J Cell Biol 163:457–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufmann SH (1992) The cellular immune response to heat shock proteins. Experientia 48:640–643

    Article  CAS  PubMed  Google Scholar 

  • Kawata Y, Kawagoe M, Hongo K, Miyazaki T, Higurashi T, Mizobata T, Nagai J (1999) Functional communications between the apical and equatorial domains of GroEL through the intermediate domain. Biochemistry 38:15731–15740

    Article  CAS  PubMed  Google Scholar 

  • Keppel F, Rychner M, Georgopoulos C (2002) Bacteriophage-encoded cochaperonins can substitute for Escherichia coli’s essential GroES protein. EMBO Rep 3:893–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  PubMed  Google Scholar 

  • Knowlton AA, Gupta S (2003) HSP60, Bax, and cardiac apoptosis. Cardiovasc Toxicol 3:263–268

    Article  CAS  PubMed  Google Scholar 

  • Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90:2608–2612

    Google Scholar 

  • Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M (2001) Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem 276:29688–29694

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Hynes G, Carne A, Ashworth A, Willison K (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol 4:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kurochkina LP, Semenyuk PI, Orlov VN, Robben J, Sykilinda NN, Mesyanzhinov VV (2012) Expression and functional characterization of the first bacteriophage-encoded chaperonin. J Virol 86:10103–10111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landry SJ, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Gierasch LM (1993) Characterization of a functionally important mobile domain of GroES. Nature 364:255–258

    Article  CAS  PubMed  Google Scholar 

  • Landry SJ, Taher A, Georgopoulos C, van der Vies SM (1996) Interplay of structure and disorder in cochaperonin mobile loops. Proc Natl Acad Sci U S A 93:11622–11627

    Google Scholar 

  • Lenz G, Ron EZ (2014) Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC). J Mol Biol 426:460–466

    Article  CAS  PubMed  Google Scholar 

  • Leroux MR (2001) Protein folding and molecular chaperones in archaea. Adv Appl Microbiol 50:219–277

    Article  CAS  PubMed  Google Scholar 

  • Levy-Rimler G, Viitanen P, Weiss C, Sharkia R, Greenberg A, Niv A, Lustig A, Delarea Y, Azem A (2001) The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. EurJ Biochem 268:3465–3472

    Article  CAS  Google Scholar 

  • Lorimer GH (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J 10:5–9

    CAS  PubMed  Google Scholar 

  • Luke K, Apiyo D, Wittung-Stafshede P (2005) Role of the unique peptide tail in hyperthermostable Aquifex aeolicus cochaperonin protein 10. Biochemistry 44:14385–14395

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2001) Microbial molecular chaperones. Adv Microb Physiol 44:93–140

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria–why so many? FEMS Microbiol Rev 33:785–800

    Article  CAS  PubMed  Google Scholar 

  • Macario AJ, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501

    Article  CAS  PubMed  Google Scholar 

  • Macario AJ, Conway de Macario E (2007) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 12:2588–2600

    Article  CAS  PubMed  Google Scholar 

  • Machida K, Fujiwara R, Tanaka T, Sakane I, Hongo K, Mizobata T, Kawata Y (2009) Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins. Biochim Biophys Acta 1794:1344–1354

    Article  CAS  PubMed  Google Scholar 

  • Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D, Nemirovski A, Shahar E, Ravid S, Luder A, Heno B, Gershoni-Baruch R, Skorecki K, Mandel H (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mande SC, Mehra V, Bloom BR, Hol WG (1996) Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae. Science 271:203–207

    Article  CAS  PubMed  Google Scholar 

  • Maresca B, Carratu L (1992) The biology of the heat shock response in parasites. Parasitol Today 8:260–266

    Article  CAS  PubMed  Google Scholar 

  • Martel R, Cloney LP, Pelcher LE, Hemmingsen SM (1990) Unique composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene 94:181–187

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991) Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature 352:36–42

    Article  CAS  PubMed  Google Scholar 

  • Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, Bartolini F, Cowan NJ, Valpuesta JM (2002) Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J 21:6377–6386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meghji S, White PA, Nair SP, Reddi K, Heron K, Henderson B, Zaliani A, Fossati G, Mascagni P, Hunt JF, Roberts MM, Coates AR (1997) Mycobacterium tuberculosis chaperonin 10 stimulates bone resorption: a potential contributory factor in Pott's disease. J Exp Med 186:1241–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369–381

    Article  CAS  PubMed  Google Scholar 

  • Morton H, Rolfe B, Clunie GJ (1977) An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1:394–397

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Cowan NJ (1998) A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell 2:93–99

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, McLennan N, Masters M, Cowan NJ (1999) A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J Bacteriol 181:5871–5875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishida N, Motojima F, Idota M, Fujikawa H, Yoshida M, Shimada I, Kato K (2006) Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy. J Biochem 140:591–598

    Article  CAS  PubMed  Google Scholar 

  • Nojima T, Ikegami T, Taguchi H, Yoshida M (2012) Flexibility of GroES mobile loop is required for efficient chaperonin function. J Mol Biol 422:291–299

    Article  CAS  PubMed  Google Scholar 

  • Numoto N, Kita A, Miki K (2005) Crystal structure of the Co-chaperonin Cpn10 from Thermus thermophilus HB8. Proteins 58:498–500

    Article  CAS  PubMed  Google Scholar 

  • Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Wachi M, Ishii A, Iwai N, Nishida T, Yamada S, Nagai K, Sugai M (2004) FtsZ-dependent localization of GroEL protein at possible division sites. Genes Cells 9:765–771

    Article  CAS  PubMed  Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873

    Article  CAS  PubMed  Google Scholar 

  • Parnas A, Nisemblat S, Weiss C, Levy-Rimler G, Pri-Or A, Zor T, Lund PA, Bross P, Azem A (2012) Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PloS one 7:e50318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2011) A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol 9:e1001040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qamra R, Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186:8105–8113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qamra R, Mande SC, Coates AR, Henderson B (2005) The unusual chaperonins of Mycobacterium tuberculosis. Tuberculosis 85:385–394

    Article  CAS  PubMed  Google Scholar 

  • Quinn KA, Athanasas-Platsis S, Wong TY, Rolfe BE, Cavanagh AC, Morton H (1990) Monoclonal antibodies to early pregnancy factor perturb tumour cell growth. Clin Exp Immunol 80:100–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radwanska M, Magez S, Michel A, Stijlemans B, Geuskens M, Pays E (2000) Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei. Infect Immun 68:848–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranford JC, Henderson B (2002) Chaperonins in disease: mechanisms, models, and treatments. Mol Pathol 55:209–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranson NA, Burston SG, Clarke AR (1997) Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J Mol Biol 266:656–664

    Article  CAS  PubMed  Google Scholar 

  • Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107:869–879

    Article  CAS  PubMed  Google Scholar 

  • Ranson NA, Clare DK, Farr GW, Houldershaw D, Horwich AL, Saibil HR (2006) Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat Struct Mol Biol 13:147–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson A, Schwager F, Landry SJ, Georgopoulos C (2001) The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli. J Biol Chem 276:4981–4987

    Article  CAS  PubMed  Google Scholar 

  • Roberts MM, Coker AR, Fossati G, Mascagni P, Coates AR, Wood SP (1999) Crystallization, x-ray diffraction and preliminary structure analysis of Mycobacterium tuberculosis chaperonin 10. Acta Crystallogra D Biol Crystallogr 55:910–914

    Article  CAS  Google Scholar 

  • Roberts MM, Coker AR, Fossati G, Mascagni P, Coates AR, Wood SP (2003) Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J Bacteriol 185:4172–4185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roseman AM, Chen S, White H, Braig K, Saibil HR (1996) The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251

    Article  CAS  PubMed  Google Scholar 

  • Roseman AM, Ranson NA, Gowen B, Fuller SD, Saibil HR (2001) Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. J Struct Biol 135:115–125

    Article  CAS  PubMed  Google Scholar 

  • Rospert S, Glick BS, Jeno P, Schatz G, Todd MJ, Lorimer GH, Viitanen PV (1993) Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria. Proc Natl Acad Sci U S A 90:10967–10971

    Google Scholar 

  • Ryabova NA, Marchenkov VV, Marchenkova SY, Kotova NV, Semisotnov GV (2013) Molecular chaperone GroEL/ES: unfolding and refolding processes. Biochemistry Biokhimiia 78:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  CAS  PubMed  Google Scholar 

  • Saibil H (1996) The lid that shapes the pot: structure and function of the chaperonin GroES. Structure 4:1–4

    Article  CAS  PubMed  Google Scholar 

  • Saibil HR, Zheng D, Roseman AM, Hunter AS, Watson GM, Chen S, Auf Der Mauer A, O’Hara BP, Wood SP, Mann NH, Barnett LK, Ellis RJ (1993) ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol 3:265–273

    Article  CAS  PubMed  Google Scholar 

  • Saibil HR, Fenton WA, Clare DK, Horwich AL (2013) Structure and allostery of the chaperonin GroEL. J Mol Biol 425:1476–1487

    Article  CAS  PubMed  Google Scholar 

  • Sareen D, Sharma R, Vohra RM (2001) Chaperone-assisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expr Purif 23:374–379

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Wilson RJ (2005) Organelle-specific cochaperonins in apicomplexan parasites. Mol Biochem Parasitol 141:133–143

    Article  CAS  PubMed  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  CAS  PubMed  Google Scholar 

  • Seale JW, Gorovits BM, Ybarra J, Horowitz PM (1996) Reversible oligomerization and denaturation of the chaperonin GroES. Biochemistry 35:4079–4083

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, Slusarski DC, Sheffield VC (2010) BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A 107:1488–1493

    Google Scholar 

  • Sharkia R, Bonshtien AL, Mizrahi I, Weiss C, Niv A, Lustig A, Viitanen PV, Azem A (2003) On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20. Biochim Biophys Acta 1651:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Koike-Takeshita A, Yokoyama K, Yoshida M, Taguchi H, Iwata S (2003) Crystallization of the chaperonin GroEL-GroES complex from Thermus thermophilus HB8. Acta Crystallogr D Biol Crystallogr 59:1632–1634

    Article  PubMed  CAS  Google Scholar 

  • Shimamura T, Koike-Takeshita A, Yokoyama K, Masui R, Murai N, Yoshida M, Taguchi H, Iwata S (2004) Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity. Structure 12:1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284:822–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608

    Article  CAS  PubMed  Google Scholar 

  • Sirur A, Best RB (2013) Effects of interactions with the GroEL cavity on protein folding rates. Biophys J 104:1098–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparrer H, Buchner J (1997) How GroES regulates binding of nonnative protein to GroEL. J Biol Chem 272:14080–14086

    Article  CAS  PubMed  Google Scholar 

  • Sparrer H, Rutkat K, Buchner J (1997) Catalysis of protein folding by symmetric chaperone complexes. Proc Natl Acad Sci U S A 94:1096–1100

    Google Scholar 

  • Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stirling PC, Bakhoum SF, Feigl AB, Leroux MR (2006) Convergent evolution of clamp-like binding sites in diverse chaperones. Nature Struct Mol Biol 13:865–870

    Article  CAS  Google Scholar 

  • Stoldt V, Rademacher F, Kehren V, Ernst JF, Pearce DA, Sherman F (1996) Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 12:523–529

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY (2009) Plastid chaperonin proteins Cpn60 alpha and Cpn60 beta are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9:38

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taguchi H, Makino Y, Yoshida M (1994) Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J Biol Chem 269:8529–8534

    CAS  PubMed  Google Scholar 

  • Taneja B, Mande SC (2001) Metal ions modulate the plastic nature of Mycobacterium tuberculosis chaperonin-10. Protein Eng 14:391–395

    Article  CAS  PubMed  Google Scholar 

  • Taneja B, Mande SC (2002) Structure of Mycobacterium tuberculosis chaperonin-10 at 3.5 A resolution. Acta Crystallogr Section D, Biol Crystallogr 58:260–266

    Article  CAS  Google Scholar 

  • Tazir Y, Steisslinger V, Soblik H, Younis AE, Beckmann S, Grevelding CG, Steen H, Brattig NW, Erttmann KD (2009) Molecular and functional characterisation of the heat shock protein 10 of Strongyloides ratti. Mol Biochem Parasitol 168:149–157

    Article  CAS  PubMed  Google Scholar 

  • Techtmann SM, Robb FT (2010) Archaeal-like chaperonins in bacteria. Proc Natl Acad Sci U S A 107:20269–20274

    Google Scholar 

  • Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18:85–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todd MJ, Viitanen PV, Lorimer GH (1993) Hydrolysis of adenosine 5’-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 32:8560–8567

    Article  CAS  PubMed  Google Scholar 

  • Todd MJ, Viitanen PV, Lorimer GH (1994) Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265:659–666

    Article  CAS  PubMed  Google Scholar 

  • Trent JD, Nimmesgern E, Wall JS, Hartl FU, Horwich AL (1991) A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354:490–493

    Article  CAS  PubMed  Google Scholar 

  • Tsai YC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M (2012) Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 287:20471–20481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuprun VL, Boekema EJ, Samsonidze TG, Pushkin AV (1991) Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves. FEBS Lett 289:205–209

    Article  CAS  PubMed  Google Scholar 

  • Tyagi NK, Fenton WA, Horwich AL (2009) GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proc Natl Acad Sci U S A 106:20264–20269

    Google Scholar 

  • Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2:a004390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

    Article  CAS  PubMed  Google Scholar 

  • van der Vies SM, Gatenby AA, Georgopoulos C (1994) Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature 368:654–656

    Article  CAS  PubMed  Google Scholar 

  • van Eden W, van der Zee R, Taams LS, Prakken AB, van Roon J, Wauben MH (1998) Heat-shock protein T-cell epitopes trigger a spreading regulatory control in a diversified arthritogenic T-cell response. Immunol Rev 164:169–174

    Article  CAS  PubMed  Google Scholar 

  • Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, Weiss J, Feeney D (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368:855–863

    Article  CAS  PubMed  Google Scholar 

  • Vitlin Gruber A, Nisemblat S, Azem A, Weiss C (2013a) The complexity of chloroplast chaperonins. Trends Plant Sci 18:688–694

    Article  CAS  Google Scholar 

  • Vitlin Gruber A, Nisemblat S, Zizelski G, Parnas A, Dzikowski R, Azem A, Weiss C (2013b) P. falciparum cpn20 is a bona fide co-chaperonin that can replace GroES in E. coli. PloS one 8:e53909

    Article  CAS  Google Scholar 

  • Wang S, Tan A, Lv J, Wang P, Yin X, Chen Y (2012) Soluble expression of recombinant human CD137 ligand in Escherichia coli by co-expression of chaperones. J Ind Microbiol Biotechnol 39:471–476

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang WY, Zhang Z, Li J, Li ZF, Tan ZG, Zhang TT, Wu ZH, Liu H, Li YZ (2013) Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. PLoS Genet 9:e1003306

    Google Scholar 

  • Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  CAS  PubMed  Google Scholar 

  • Wick G (2006) The heat is on: heat-shock proteins and atherosclerosis. Circulation 114:870–872

    Article  PubMed  Google Scholar 

  • Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. The EMBO J 18:2049–2056

    Article  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Sigler PB (1998) GroEL/GroES: structure and function of a two-stroke folding machine. J Struct Biol 124:129–141

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Yifrach O, Horovitz A (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34:5303–5308

    Article  CAS  PubMed  Google Scholar 

  • Zamora-Veyl FB, Kroemer M, Zander D, Clos J (2005) Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani, CPN10. Kinetoplastid Biol Dis 4:3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zeilstra-Ryalls J, Fayet O, Georgopoulos C (1994) Two classes of extragenic suppressor mutations identify functionally distinct regions of the GroEL chaperone of Escherichia coli. J Bacteriol 176:6558–6565

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the National Research Foundation (NRF), Rhodes University and Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. The views reflected in this document are those of the author and should in no way be attributed to the NRF, Rhodes University or DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aileen Boshoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boshoff, A. (2015). Chaperonin—Co-chaperonin Interactions. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_8

Download citation

Publish with us

Policies and ethics