Skip to main content
Log in

Multiple chaperonins in bacteria—novel functions and non-canonical behaviors

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10–15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amster-Choder O (2011) The compartmentalized vessel: the bacterial cell as a model for subcellular organization (a tale of two studies). Cell Logist 1:77–81

    PubMed Central  PubMed  Google Scholar 

  • Apetri AC, Horwich AL (2008) Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc Natl Acad Sci U S A 105:17351–17355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aravindhan V, Christy AJ, Roy S, Ajitkumar P, Narayanan PR, Narayanan S (2009) Mycobacterium tuberculosis groE promoter controls the expression of the bicistronic groESL1 operon and shows differential regulation under stress conditions. FEMS Microbiol Lett 292:42–49

    CAS  PubMed  Google Scholar 

  • Arsene F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    CAS  PubMed  Google Scholar 

  • Baird PN, Hall LM, Coates AR (1989) Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis. J Gen Microbiol 135:931–939

    CAS  PubMed  Google Scholar 

  • Barreiro C, Gonzalez-Lavado E, Brand S, Tauch A, Martin JF (2005) Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone. J Bacteriol 187:884–889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Basu D, Khare G, Singh S, Tyagi A, Khosla S, Mande SC (2009) A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Res 37:4944–4954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berleman JE, Kirby JR (2009) Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586

    CAS  PubMed  Google Scholar 

  • Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107:223–233

    CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    CAS  PubMed  Google Scholar 

  • Cehovin A, Coates AR, Hu Y, Riffo-Vasquez Y, Tormay P, Botanch C, Altare F, Henderson B (2010) Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis. Infect Immun 78:3196–3206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, Sikor M, Jiang G, Lamb DC, Hartl FU, Hayer-Hartl M (2010) Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:112–122

    CAS  PubMed  Google Scholar 

  • Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235–246

    CAS  PubMed  Google Scholar 

  • Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, Chiu W, Rye HS (2013) Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153:1354–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DH, Song JL, Chuang DT, Chiu W, Ludtke SJ (2006) An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate. Structure 14:1711–1722

    CAS  PubMed  Google Scholar 

  • Chen H, Keseler IM, Shimkets LJ (1990) Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis. J Bacteriol 172:4206–4213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR (1994) Location of a folding protein and shape changes in GroELGroES complexes imaged by cryo-electron microscopy. Nature 371:261–264

  • Colaco CA, MacDougall A (2013) Mycobacterial chaperonins: the tail wags the dog. FEMS Microbiol Lett 350:20–24

    PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    CAS  PubMed  Google Scholar 

  • Cuellar J, Martin-Benito J, Scheres SH, Sousa R, Moro F, Lopez-Vinas E, Gomez-Puertas P, Muga A, Carrascosa JL, Valpuesta JM (2008) The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. Nat Struct Mol Biol 15:858–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Dolan KM, Greenberg EP (1992) Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli. J Bacteriol 174:5132–5135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dworkin M, Kaiser D (1985) Cell interactions in myxobacterial growth and development. Science 230:18–24

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis RJ (1996) Chaperonins: introductory perspective. In: Ellis RJ (ed) The Chaperonins. Academic, Orlando, pp 1–25

    Google Scholar 

  • Ellis RJ, Hartl FU (1999) Principles of protein folding in the cellular environment. Curr Opin Struct Biol 9:102–110

  • Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA (2012) The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function. Mol Microbiol 85:934–944

    CAS  PubMed  Google Scholar 

  • Farr GW, Fenton WA, Horwich AL (2007) Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci U S A 104:5342–5347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    CAS  PubMed  Google Scholar 

  • Figueiredo L, Klunker D, Ang D, Naylor DJ, Kerner MJ, Georgopoulos C, Hartl FU, Hayer-Hartl M (2004) Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. J Biol Chem 279:1090–1099

    CAS  PubMed  Google Scholar 

  • Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F, Hennecke H (1993) One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12:2901–2912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer HM, Schneider K, Babst M, Hennecke H (1999) GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171:279–289

    CAS  Google Scholar 

  • Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2:282–293

    CAS  PubMed  Google Scholar 

  • Furutani M, Iida T, Yoshida T, Maruyama T (1998) Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J Biol Chem 273:28399–28407

    CAS  PubMed  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P et al (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • George R, Kelly SM, Price NC, Erbse A, Fisher M, Lund PA (2004) Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties. Biochem Biophys Res Commun 324:822–828

    CAS  PubMed  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    CAS  PubMed  Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS et al (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200–15205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gould P, Maguire M, Lund PA (2007a) Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum. Arch Microbiol 187:1–14

    CAS  PubMed  Google Scholar 

  • Gould PS, Burgar HR, Lund PA (2007b) Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones 12:123–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goyal K, Qamra R, Mande SC (2006) Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol 63:781–787

    CAS  PubMed  Google Scholar 

  • Groemping Y, Reinstein J (2001) Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response. J Mol Biol 314:167–178

    CAS  PubMed  Google Scholar 

  • Grossman AD, Erickson JW, Gross CA (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390

    CAS  PubMed  Google Scholar 

  • Grossman AD, Straus DB, Walter WA, Gross CA (1987) Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev 1:179–184

    CAS  PubMed  Google Scholar 

  • Gupta AJ, Haldar S, Miličić FG, Hartl UF, Hayer-Hartl M (2014) Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level. J Mol Biol 426:2739–2754

    CAS  PubMed  Google Scholar 

  • Gutsche I, Essen LO, Baumeister W (1999) Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol 293:295–312

    CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    CAS  PubMed  Google Scholar 

  • Hayer-Hartl MK, Martin J, Hartl FU (1995) Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269:836–841

    CAS  PubMed  Google Scholar 

  • Hecker M, Schumann W, Volker U (1996) Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19:417–428

    CAS  PubMed  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    CAS  PubMed  Google Scholar 

  • Henderson B, Fares MA, Lund PA (2013) Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 88:955–987

    PubMed  Google Scholar 

  • Henderson B, Lund PA, Coates AR (2010) Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis (Edinb) 90:119–124

    CAS  Google Scholar 

  • Hickey TB, Thorson LM, Speert DP, Daffe M, Stokes RW (2009) Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77:3389–3401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hickey TB, Ziltener HJ, Speert DP, Stokes RW (2010) Mycobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface. Cell Microbiol 12:1634–1647

    CAS  PubMed  Google Scholar 

  • Hirtreiter AM, Calloni G, Forner F, Scheibe B, Puype M, Vandekerckhove J, Mann M, Hartl FU, Hayer-Hartl M (2009) Differential substrate specificity of group I and group II chaperonins in the archaeon Methanosarcina mazei. Mol Microbiol 74:1152–1168

    CAS  PubMed  Google Scholar 

  • Hoffmann JH, Linke K, Graf PC, Lilie H, Jakob U (2004) Identification of a redox-regulated chaperone network. EMBO J 23:160–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horwich AL, Apetri AC, Fenton WA (2009) The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583:2654–2662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horwich AL, Fenton WA, Rapoport TA (2001) Protein folding taking shape. Workshop on molecular chaperones. EMBO Rep 2:1068–1073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

  • Hu Y, Coates AR, Liu A, Lund PA, Henderson B (2013) Identification of the monocyte activating motif in Mycobacterium tuberculosis chaperonin 60.1. Tuberculosis (Edinb) 93:442–447

    CAS  Google Scholar 

  • Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS, Coates AR (2008) A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang YS, Chuang DT (1999) Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro. J Biol Chem 274:10405–10412

    CAS  PubMed  Google Scholar 

  • Hughes AL (1993) Contrasting evolutionary rates in the duplicate chaperonin genes of Mycobacterium tuberculosis and M. leprae. Mol Biol Evol 10:1343–1359

    CAS  PubMed  Google Scholar 

  • Iizuka R, So S, Inobe T, Yoshida T, Zako T, Kuwajima K, Yohda M (2004) Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin. J Biol Chem 279:18834–18839

    CAS  PubMed  Google Scholar 

  • Ivic A, Olden D, Wallington EJ, Lund PA (1997) Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37 degrees C but not at 43 degrees C. Gene 194:1–8

    CAS  PubMed  Google Scholar 

  • Jager D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA (2009) Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci U S A 106:21878–21882

    PubMed Central  PubMed  Google Scholar 

  • Jiang DM, Zhao L, Zhang CY, Li J, Xia ZJ, Wang J, Wu ZH, Li YZ (2008) Taxonomic analysis of Sorangium strains based on HSP60 and 16S rRNA gene sequences and morphology. Int J Syst Evol Microbiol 58:2654–2659

    CAS  PubMed  Google Scholar 

  • Kaiser D (1998) How and why myxobacteria talk to each other. Curr Opin Microbiol 1:663–668

    CAS  PubMed  Google Scholar 

  • Kaiser D, Manoil C, Dworkin M (1979) Myxobacteria: cell interactions, genetics, and development. Annu Rev Microbiol 33:595–639

    CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    PubMed  Google Scholar 

  • Karunakaran KP, Noguchi Y, Read TD, Cherkasov A, Kwee J, Shen C, Nelson CC, Brunham RC (2003) Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185:1958–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Killeen KP, Nelson DR (1988) Acceleration of starvation- and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus. J Bacteriol 170:5200–5207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    CAS  PubMed  Google Scholar 

  • Klunker D, Haas B, Hirtreiter A, Figueiredo L, Naylor DJ, Pfeifer G, Muller V, Deppenmeier U, Gottschalk G, Hartl FU, Hayer-Hartl M (2003) Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei. J Biol Chem 278:33256–33267

    CAS  PubMed  Google Scholar 

  • Kondrashov FA, Kondrashov AS (2006) Role of selection in fixation of gene duplications. J Theor Biol 239:141–151

    CAS  PubMed  Google Scholar 

  • Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90:2608–2612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar CM, Khare G, Srikanth CV, Tyagi AK, Sardesai AA, Mande SC (2009) Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization. J Bacteriol 191:6525–6538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar CM, Mande SC (2011) Protein chaperones and non-protein substrates: on substrate promiscuity of GroEL. Curr Sci 100:1646–1653, 1646

    CAS  Google Scholar 

  • Lamb JR, Bal V, Rothbard JB, Mehlert A, Mendez-Samperio P, Young DB (1989) The mycobacterial GroEL stress protein: a common target of T-cell recognition in infection and autoimmunity. J Autoimmun 2(Suppl):93–100

    PubMed  Google Scholar 

  • Lewthwaite J, George R, Lund PA, Poole S, Tormay P, Sharp L, Coates AR, Henderson B (2002) Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interaction with cell surface CD14. Cell Stress Chaperones 7:130–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S, Roberts M, Sharp L, Henderson B (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Wang Y, Zhang CY, Zhang WY, Jiang DM, Wu ZH, Liu H, Li YZ (2010) Myxococcus xanthus viability depends on groEL supplied by either of two genes, but the paralogs have different functions during heat shock, predation, and development. J Bacteriol 192:1875–1881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA (2013) Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 11:e1001735

    PubMed Central  PubMed  Google Scholar 

  • Lin Z, Rye HS (2004) Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 16:23–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin Z, Schwartz FP, Eisenstein E (1995) The hydrophobic nature of GroEL-substrate binding. J Biol Chem 270:1011–1014

    CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    CAS  PubMed  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol Rev 33:785–800

    CAS  PubMed  Google Scholar 

  • Ma J, Sigler PB, Xu Z, Karplus M (2000) A dynamic model for the allosteric mechanism of GroEL. J Mol Biol 302:303–313

    CAS  PubMed  Google Scholar 

  • Macario AJ, Conway De Macario E (2001) The molecular chaperone system and other anti-stress mechanisms in archaea. Front Biosci 6:D262–D283

    CAS  PubMed  Google Scholar 

  • Macario AJ, Lange M, Ahring BK, Conway de Macario E (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macario AJ, Malz M, Conway de Macario E (2004) Evolution of assisted protein folding: the distribution of the main chaperoning systems within the phylogenetic domain archaea. Front Biosci 9:1318–1332

    CAS  PubMed  Google Scholar 

  • Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mande SC, Kumar CM, Sharma A (2013) Evolution of bacterial chaperonin 60 paralogues and moonlighting activity. In: Henderson B (ed) Moonlighting cell stress proteins in microbial infections. Springer, Netherlands, pp 101–121

    Google Scholar 

  • Mayhew M, da Silva AC, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU (1996) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379:420–426

    CAS  PubMed  Google Scholar 

  • Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, Frydman J (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113:369–381

    CAS  PubMed  Google Scholar 

  • Mogk A, Bukau B (2004) Molecular chaperones: structure of a protein disaggregase. Curr Biol 14:R78–R80

    CAS  PubMed  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B (1999) Identification of thermolabile E. coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of proteobacteria. Nature 411:948–950

    CAS  PubMed  Google Scholar 

  • Naffin-Olivos JL, Georgieva M, Goldfarb N, Madan-Lala R, Dong L, Bizzell E, Valinetz E, Brandt GS, Yu S, Shabashvili DE, Ringe D, Dunn BM, Petsko GA, Rengarajan J (2014) Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2. PLoS Pathog 10:e1004132–e1004132

    PubMed Central  PubMed  Google Scholar 

  • Nakamura T, Tanaka M, Maruyama A, Higashi Y, Kurusu Y (2004) A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature. Biosci Biotechnol Biochem 68:2498–2504

    CAS  PubMed  Google Scholar 

  • Narberhaus F, Bahl H (1992) Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. J Bacteriol 174:3282–3289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narberhaus F, Giebeler K, Bahl H (1992) Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bacteriol 174:3290–3299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30:3–16

    CAS  PubMed  Google Scholar 

  • Nelson DR, Killeen KP (1986) Heat shock proteins of vegetative and fruiting Myxococcus xanthus cells. J Bacteriol 168:1100–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O (2011) Translation-independent localization of mRNA in E. coli. Science 331:1081–1084

    CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    PubMed Central  PubMed  Google Scholar 

  • Ogawa J, Long SR (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729

    CAS  PubMed  Google Scholar 

  • Ojha A, Anand M, Bhatt A, Kremer L, Jr RJW, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873

    CAS  PubMed  Google Scholar 

  • Otani M, Tabata J, Ueki T, Sano K, Inouye S (2001) Heat-shock-induced proteins from Myxococcus xanthus. J Bacteriol 183:6282–6287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park ES, Fenton WA, Horwich AL (2005) No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: no observable protection of metastable Rubisco intermediate or GroEL-bound Rubisco from tritium exchange. FEBS Lett 579:1183–1186

    CAS  PubMed  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    CAS  PubMed  Google Scholar 

  • Patel BK, Banerjee DK, Butcher PD (1991) Characterization of the heat shock response in Mycobacterium bovis BCG. J Bacteriol 173:7982–7987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qamra R, Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186:8105–8113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qamra R, Srinivas V, Mande SC (2004) Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342:605–617

    CAS  PubMed  Google Scholar 

  • Rao T, Lund PA (2010) Differential expression of the multiple chaperonins of Mycobacterium smegmatis. FEMS Microbiol Lett 310:24–31

    CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    CAS  PubMed  Google Scholar 

  • Rince A, Flahaut S, Auffray Y (2000) Identification of general stress genes in Enterococcus faecalis. Int J Food Microbiol 55:87–91

    CAS  PubMed  Google Scholar 

  • Rodriguez-Quinones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA (2005) Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth. Arch Microbiol 183:253–265

    CAS  PubMed  Google Scholar 

  • Roseman AM, Chen S, White H, Braig K, Saibil HR (1996) The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251

    CAS  PubMed  Google Scholar 

  • Rosenberg E, Filer D, Zafriti D, Kindler SH (1973) Aspartokinase activity and the developmental cycle of Myxococcus xanthus. J Bacteriol 115:29–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudner DZ, Losick R (2010) Protein subcellular localization in bacteria. Cold Spring Harb Perspect Biol 2:a000307

    PubMed Central  PubMed  Google Scholar 

  • Rusanganwa E, Gupta RS (1993) Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene 126:67–75

    CAS  PubMed  Google Scholar 

  • Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL (1999) GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325–338

    CAS  PubMed  Google Scholar 

  • Saibil HR, Zheng D, Roseman AM, Hunter AS, Watson GM, Chen S, Auf Der Mauer A, O’Hara BP, Wood SP, Mann NH, Barnett LK, Ellis RJ (1993) ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol 3:265–273

    CAS  PubMed  Google Scholar 

  • Sakikawa C, Taguchi H, Makino Y, Yoshida M (1999) On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J Biol Chem 274:21251–21256

    CAS  PubMed  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A et al (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289

    CAS  PubMed  Google Scholar 

  • Schumann W (2003) The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 A reveals possible modes of function. J Mol Biol 412:192–203

    CAS  PubMed  Google Scholar 

  • Shapiro L, McAdams HH, Losick R (2009) Why and how bacteria localize proteins. Science 326:1225–1228

    CAS  PubMed  Google Scholar 

  • Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54:473–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinnick TM, Plikaytis BB, Hyche AD, Van Landingham RM, Walker LL (1989) The Mycobacterium tuberculosis BCG-a protein has homology with the Escherichia coli GroES protein. Nucleic Acids Res 17(3), 1254.

  • Shinnick TM, Vodkin MH, Williams JC (1988) The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coli GroEL protein. Infect Immun 56:446–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284:822–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sielaff B, Lee KS, Tsai FT (2010) Crystallization and preliminary X-ray crystallographic analysis of a GroEL1 fragment from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66:418–420

    CAS  Google Scholar 

  • Sielaff B, Lee KS, Tsai FT (2011) Structural and functional conservation of Mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 is a chaperonin. J Mol Biol 405:831–839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnenberg MG, Belisle JT (1997) Definition of Mycobacterium tuberculosis culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and electrospray mass spectrometry. Infect Immun 65:4515–4524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stapleton MR, Smith LJ, Hunt DM, Buxton RS, Green J (2012) Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis (Edinb) 92:328–332

    CAS  Google Scholar 

  • Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB, Butcher PD (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138

    CAS  PubMed  Google Scholar 

  • Straus D, Walter W, Gross CA (1990) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4:2202–2209

    CAS  PubMed  Google Scholar 

  • Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329:348–351

    CAS  PubMed  Google Scholar 

  • Svensater G, Sjogreen B, Hamilton IR (2000) Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146(Pt 1):107–117

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taneja B, Mande SC (2001) Three-dimensional structure of Mycobacterium tuberculosis chaperonin-10 reveals a partially stable conformation of its mobile loop. Curr Sci 81:87–91

    CAS  Google Scholar 

  • Taneja B, Mande SC (2002) Structure of Mycobacterium tuberculosis chaperonin-10 at 3.5 Å resolution. Acta Crystallogr D Biol Crystallogr 58:260–266

    PubMed  Google Scholar 

  • Tang YC, Chang HC, Chakraborty K, Hartl FU, Hayer-Hartl M (2008) Essential role of the chaperonin folding compartment in vivo. EMBO J 27:1458–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903–914

    CAS  PubMed  Google Scholar 

  • Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol Microbiol 30:583–593

    CAS  PubMed  Google Scholar 

  • Teixeira-Gomes AP, Cloeckaert A, Zygmunt MS (2000) Characterization of heat, oxidative, and acid stress responses in Brucella melitensis. Infect Immun 68:2954–2961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thirumalai D, Lorimer GH (2001) Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct 30:245–269

    CAS  PubMed  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The dnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646

    CAS  PubMed  Google Scholar 

  • Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–581

    CAS  PubMed  Google Scholar 

  • Ueno T, Taguchi H, Tadakuma H, Yoshida M, Funatsu T (2004) GroEL mediates protein folding with a two successive timer mechanism. Mol Cell 14:423–434

    CAS  PubMed  Google Scholar 

  • Varon M, Cohen S, Rosenberg E (1984) Autocides produced by Myxococcus xanthus. J Bacteriol 160:1146–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volker U, Engelmann S, Maul B, Riethdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752

    PubMed  Google Scholar 

  • Wallington EJ, Lund PA (1994) Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140:113–122

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang WY, Zhang Z, Li J, Li ZF, Tan ZG, Zhang TT, Wu ZH, Liu H, Li YZ (2013) Mechanisms involved in the functional divergence of duplicated GroEL chaperonins in Myxococcus xanthus DK1622. PLoS Genet 9:e1003306–e1003306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weimer RM, Creighton C, Stassinopoulos A, Youderian P, Hartzell PL (1998) A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J Bacteriol 180:5357–5368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    CAS  PubMed  Google Scholar 

  • Weissman KJ, Muller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2136

    CAS  PubMed  Google Scholar 

  • Weissman KJ, Muller R (2010) Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 27:1276–1295, 1276

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Muller R (2009) Myxobacteria—‘microbial factories’ for the production of bioactive secondary metabolites. Mol BioSyst 5:567–574

    CAS  PubMed  Google Scholar 

  • Wetzstein M, Volker U, Dedio J, Lobau S, Zuber U, Schiesswohl M, Herget C, Hecker M, Schumann W (1992) Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bacteriol 174:3300–3310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitworth DE, Cock PJ (2008) Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Microbiology 154:360–372

    CAS  PubMed  Google Scholar 

  • Williams TA, Codoner FM, Toft C, Fares MA (2009a) Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends Genet 26:47–51

    PubMed  Google Scholar 

  • Williams TJ, Burg DW, Ertan H, Raftery MJ, Poljak A, Guilhaus M, Cavicchioli R (2009b) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part II: the effect of different methylated growth substrates. J Proteome Res 9:653–663

    Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP et al (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    CAS  PubMed  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    CAS  PubMed  Google Scholar 

  • Yang D, Ye X, Lorimer GH (2013) Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci U S A 110:E4298–E4305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Geng Y, Shi W (1998) A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation. J Bacteriol 180:218–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao R, Macario AJ, Conway de Macario E (1992) Immunochemical differences among Methanosarcina mazei S-6 morphologic forms. J Bacteriol 174:4683–4688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh KC, Peck MC, Long SR (2002) Luteolin and GroESL modulate in vitro activity of NodD. J Bacteriol 184:525–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young DB, Garbe TR (1991) Heat shock proteins and antigens of Mycobacterium tuberculosis. Infect Immun 59:3086–3093

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young DB, Ivanyi J, Cox JH, Lamb JR (1987) The 65kDa antigen of mycobacteria—a common bacterial protein? Immunol Today 8:215–219

    CAS  PubMed  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    CAS  PubMed  Google Scholar 

  • Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Department of Biotechnology, India (BT/PR3260/BRB/10/967/2011). CMSK and GM have been supported by post-doctoral fellowship from the Department of Biotechnology and Department of Science and Technology, India, respectively. The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C.M.S., Mande, S.C. & Mahajan, G. Multiple chaperonins in bacteria—novel functions and non-canonical behaviors. Cell Stress and Chaperones 20, 555–574 (2015). https://doi.org/10.1007/s12192-015-0598-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-015-0598-8

Keywords

Navigation