Skip to main content
Log in

Reconciling theories of chaperonin accelerated folding with experimental evidence

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

For the last 20 years, a large volume of experimental and theoretical work has been undertaken to understand how chaperones like GroEL can assist protein folding in the cell. The most accepted explanation appears to be the simplest: GroEL, like most other chaperones, helps proteins fold by preventing aggregation. However, evidence suggests that, under some conditions, GroEL can play a more active role by accelerating protein folding. A large number of models have been proposed to explain how this could occur. Focused experiments have been designed and carried out using different protein substrates with conclusions that support many different mechanisms. In the current article, we attempt to see the forest through the trees. We review all suggested mechanisms for chaperonin-mediated folding and weigh the plausibility of each in light of what we now know about the most stringent, essential, GroEL-dependent protein substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Minton AP (2000) Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol 10:34–35

    Article  CAS  PubMed  Google Scholar 

  2. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  CAS  PubMed  Google Scholar 

  3. Hartl UF, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581

    Article  CAS  PubMed  Google Scholar 

  4. Hartl UF, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  5. Narberhaus F (2002) α-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol R 66(1):64–93

    Article  CAS  Google Scholar 

  6. Saibil HR, Horwich AL, Fenton WA (2002) Allostery and protein substrate conformational change during GroEL/GroES-mediated protein folding. Adv Protein Chem 59:45–72

    Article  CAS  Google Scholar 

  7. Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90(3):491–500

    Article  CAS  PubMed  Google Scholar 

  8. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Article  CAS  PubMed  Google Scholar 

  9. Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284(5415):822–825

    Article  CAS  PubMed  Google Scholar 

  10. Lin Z, Madan D, Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15(3):303–311

    Article  CAS  PubMed  Google Scholar 

  11. Sharma S, Chakraborty K, Müller BK, Astola N, Tang Y, Lamb DC, Hayer-Hartl M, Hartl FU (2008) Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133:142–153

    Article  CAS  PubMed  Google Scholar 

  12. Mayhew M, da Silva ACR, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU (1996) Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379(6564):420–426

    Article  CAS  PubMed  Google Scholar 

  13. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122(2):209–220

    Article  CAS  PubMed  Google Scholar 

  14. Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL (1996) Characterization of the active intermediate of a GroEL–GroES-mediated protein-folding reaction. Cell 84(3):481–490

    Article  CAS  PubMed  Google Scholar 

  15. Hayer-Hartl MK, Weber F, Hartl FU (1996) Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. EMBO J 15(22):6111–6121

    CAS  PubMed  Google Scholar 

  16. Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107(2):223–233

    Article  CAS  PubMed  Google Scholar 

  17. Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action—productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  CAS  PubMed  Google Scholar 

  18. Apetri AC, Horwich AL (2008) Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc Natl Acad Sci USA 105(45):17351–17355

    Article  CAS  PubMed  Google Scholar 

  19. Tang Y-C, Chang H-C, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006) Structural features of the GroEL–GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903–914

    Article  CAS  PubMed  Google Scholar 

  20. Tang Y-C, Chang H-C, Chakraborty K, Hartl FU, Hayer-Hartl M (2008) Essential role of the chaperonin folding compartment in vivo. EMBO J 27:1458–1468

    CAS  PubMed  Google Scholar 

  21. Ranson NA, Burston SG, Clarke AR (1997) Binding, enscapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J Mol Biol 266:656–664

    Article  CAS  PubMed  Google Scholar 

  22. Sparrer H, Rutkat K, Buchner J (1997) Catalysis of protein folding by symmetric chaperone complexes. Proc Natl Acad Sci USA 94:1096–1100

    Article  CAS  PubMed  Google Scholar 

  23. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70:DnaK cooperates with Trigger Factor in chaperoning nascent chains. Cell 97:755–765

    Article  CAS  PubMed  Google Scholar 

  24. Ellis RJ, Hartl FU (1996) Protein folding in the cell: competing models of chaperonin function. FASEB 10:20–26

    CAS  Google Scholar 

  25. Hesterkamp T, Bukau B (1998) Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E.coli. EMBO J 17(16):4818–4828

    Article  CAS  PubMed  Google Scholar 

  26. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 review. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  27. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  PubMed  Google Scholar 

  28. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–586

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhuri TK, Farr GW, Fenton WA, Rospert S, Horwich AL (2001) GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107:235–246

    Article  CAS  PubMed  Google Scholar 

  30. Chen D-H, Song J, Chuang DT, Chiu W, Ludtke SJ (2006) An expanded conformation of single-ring groel–groes complex encapsulates an 86 kda substrate. Structure 14:1711–1722

    Article  CAS  PubMed  Google Scholar 

  31. Ayling A, Baneyx F (1996) Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli β-galactosidase. Prot Sci 5(3):478–487

    Article  CAS  Google Scholar 

  32. Chuang JL, Wynn RM, Song J, Chuang DT (1999) Groel/groes-dependent reconstitution of α 2 β 2 tetramers of human mitochondrial branched chain α-ketoacid decarboxylase. obligatory interaction of chaperonins with an αβ dimeric intermediate. J Biol Chem 274(15):478–487

    Article  Google Scholar 

  33. Fenton WA, Horwich AL (2003) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36:229–256

    Google Scholar 

  34. Saibil HR, Zheng D, Roseman AM, Hunter AS, Watson GMF, Chen S, auf der Mauer A, O’Hara BP, Wood SP, Mann NH, Barnettt LK, Ellis RJ (1993) ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol 3(5):265–273

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Gao X, Chen L (2009) GroEL recognizes an amphipathic helix and binds to the hydrophobic side. J Biol Chem 284(7):4324–4331

    Article  CAS  PubMed  Google Scholar 

  36. Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR (2007) Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 26(3):415–426

    Article  CAS  PubMed  Google Scholar 

  37. Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009) Chaperonin complex with a newly folded protein encapsulated in the folding chamber. Nature 457:107–111

    Article  CAS  PubMed  Google Scholar 

  38. Stan G, Lorimer GH, Thirumalai D, Brooks BR (2007) Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein. Proc Natl Acad Sci USA 104(21):8803–8808

    Article  CAS  PubMed  Google Scholar 

  39. Horovitz A, Willison KR (2005) Allosteric regulation of chaperonins. Curr Opin Struct Biol 15(6):646–651

    Article  CAS  PubMed  Google Scholar 

  40. Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Siabil HR, Horwich AL (1999) GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97(3):325–338

    Article  CAS  PubMed  Google Scholar 

  41. Roseman AM, Chen SX, White H, Braig K, Saibil HR (1996) The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251

    Article  CAS  PubMed  Google Scholar 

  42. Yifrach O, Horovitz A (1994) Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196 → Ala. J Mol Biol 243(3):397–401

    Article  CAS  PubMed  Google Scholar 

  43. Yifrach O, Horovitz A (1995) Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34(16):5303–5308

    Article  CAS  PubMed  Google Scholar 

  44. Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  CAS  PubMed  Google Scholar 

  45. Kad NM, Ranson NA, Cliff MJ, Clarke AR (1998) Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. J Mol Biol 278:267–278

    Article  CAS  PubMed  Google Scholar 

  46. Yifrach O, Horovitz A (1996) Allosteric control by ATP of non-folded protein binding to GroEL. J Mol Biol 255(3):356–361

    Article  CAS  PubMed  Google Scholar 

  47. Inbar E, Horovitz A (1997) GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL–GroES complex. Biochemistry 36(40):12276–12281

    Article  CAS  PubMed  Google Scholar 

  48. Horovitz A, Fridmann Y, Kafri G, Yifrach O (2001) Review: allostery in chaperonins. J Struct Biol 135(2):104–114

    Article  CAS  PubMed  Google Scholar 

  49. Ma J, Karplus M (1998) The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc Natl Acad Sci USA 95(15):8502–8507

    Article  CAS  PubMed  Google Scholar 

  50. Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR (1999) A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J Mol Biol 293:667–684

    Article  CAS  PubMed  Google Scholar 

  51. Gresham JS (2004) Allostery and GroEL: exploring the tenets of nested cooperativity. Ph.D. Thesis, University of Maryland, College Park

  52. Madan D, Lin Z, Rye HS (2008) Triggering protein folding within the GroEL–GroES complex. J Biol Chem 283(46):32003–32013

    Article  CAS  PubMed  Google Scholar 

  53. Ranson NA, Clare DK, Farr GW, Houldershaw D, Horwich AL, Saibil HR (2006) Allosteric signaling of ATP hydrolysis in GroEL–GroES complexes. Nat Struct Mol Biol 13(2):147–152

    Article  CAS  PubMed  Google Scholar 

  54. Jabarak R, Westley J, Dungan JM, Horowitz P (1993) A chaperone-mimetic effect of serum albumin on rhodanese. J Biochem Toxicol 8(1):41–48

    Article  Google Scholar 

  55. Grason JP, Gresham JS, Lorimer GH (2008) Setting the chaperonin timer: a two-stroke, two-speed, protein machine. Proc Natl Acad Sci USA 105(45):17339–17344

    Article  CAS  PubMed  Google Scholar 

  56. Grason JP, Gresham JS, Widjaja L, Wehri SC, Lorimer GH (2008) Setting the chaperonin timer: the effects of k+ substrate protein on ATP hydrolysis. Proc Natl Acad Sci USA 105(45):17334–17338

    Article  CAS  PubMed  Google Scholar 

  57. Melkani GC, Zardeneta G, Mendoza JA (2000) The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure. Biometals 16(3):479–484

    Article  Google Scholar 

  58. Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O’Keefe DP, Lorimer GH (1990) Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (GroEL) are potassium dependent. Biochemistry 29(24):5665–5671

    Article  CAS  PubMed  Google Scholar 

  59. Goloubinoff P, Christeller JT, Gatenby AA, Lorimer H (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state. Nature 342(6252):884–889

    Article  CAS  PubMed  Google Scholar 

  60. Todd MJ, Viitanen PV, Lorimer GH (1993) Hydrolysis of adenosine 5-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry 32(33):8560–8567

    Article  CAS  PubMed  Google Scholar 

  61. Laminet AA, Ziegelhoffer T, Georgopoulos C, Plückthun A (1990) The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor. EMBO J 9(7):2315–2319

    CAS  PubMed  Google Scholar 

  62. Sameshima T, Ueno T, Iizuka R, Ishii N, Terada N, Okabe K, Funatsu T (2008) Football- and bullet-shaped GroEL–GroES complexes coexist during the reaction cycle. J Biol Chem 283(35):23765–23773

    Article  CAS  PubMed  Google Scholar 

  63. Liu C-P, Perrett S, Zhou J-M (2005) Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK–DnaJ–GrpE chaperone system to allow refolding. J Biol Chem 280(14):13315–13320

    Article  CAS  PubMed  Google Scholar 

  64. Lin Z, Rye HS (2004) Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 16:23–34

    Article  CAS  PubMed  Google Scholar 

  65. Ueno T, Taguchi H, Tadakuma H, Yoshida M, Funatsu T (2004) GroEL mediates protein folding with a two successive timer mechanism. Mol Cell 14:423–434

    Article  CAS  PubMed  Google Scholar 

  66. Taguchi H, Ueno T, Tadakuma H, Yoshida M, Funatsu T (2001) Single-molecule observation of protein–protein interactions in the chaperonin system. Nat Struct Biol 19:861–865

    Article  CAS  Google Scholar 

  67. Cliff MJ, Limpkin C, Cameron A, Burston SG, Clarke AR (2006) The GroE encapsulation mechanism: elucidation of steps in the capture of a protein substrate. J Biol Chem 281(30):21266–21275

    Article  CAS  PubMed  Google Scholar 

  68. Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K (2006) Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J 25(19):4567–4576

    Article  CAS  PubMed  Google Scholar 

  69. Hillger F, Hänni D, Nettels D, Geister S, Grandin M, Textor M, Schuler B (2008) Probing protein–chaperone interactions with single-molecule fluorescence spectroscopy. Angew Chem Int Ed 47:6184–6188

    Article  CAS  Google Scholar 

  70. Badcoe IG, Smith CJ, Wood S, Halsall DJ, Holbrook JJ, Lund P, Clarke AR (1991) Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry 30(38):9195–9200

    Article  CAS  PubMed  Google Scholar 

  71. Gray TE, Fersht AR (1993) Refolding of barnase in the presence of GroE. J Mol Biol 234(4):1197–1207

    Article  Google Scholar 

  72. Corrales FJ, Fersht AR (1996) Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage. Proc Natl Acad Sci USA 93(9):4509–4512

    Article  CAS  PubMed  Google Scholar 

  73. Jackson GS, Staniforth RA, Halsall DJ, Atkinson T, Holbrook JJ, Clarke AR, Burston SG (1993) Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry 32:2554–2563

    Article  CAS  PubMed  Google Scholar 

  74. Lorimer GH (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB 10:5–9

    CAS  Google Scholar 

  75. Hu B, Mayer MP, Tomita M (2006) Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E.coli. Biophys J 91:496–507

    Article  CAS  PubMed  Google Scholar 

  76. Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30(3):567–581

    Article  CAS  PubMed  Google Scholar 

  77. Todd MJ, Lorimer GH, Thirumalai D (1996) Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci USA 93(9):4030–4035

    Article  CAS  PubMed  Google Scholar 

  78. Horwich AL, Farr GW, Fenton WA (2006) GroEL–GroES-mediated protein folding. Chem Rev 106:1917–1930

    Article  CAS  PubMed  Google Scholar 

  79. Koike-Takeshita A, Yoshida M, Taguchi H (2008) Revisiting the GroEL–GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant. J Biol Chem 283(35):23774–23781

    Article  CAS  PubMed  Google Scholar 

  80. Todd MJ, Viitanen PV, Lorimer GH (1994) Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265(5172):659–666

    Article  CAS  PubMed  Google Scholar 

  81. Nelson DL, Cox MM (2000) Lehninger principles of biochemistry, 3rd edn. Worth, New York

    Google Scholar 

  82. Motojima F, Chaudhry C, Fenton WA, Farr GW, Horwich AL (2004) Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proc Natl Acad Sci USA 101(42):15005–15012

    Article  CAS  PubMed  Google Scholar 

  83. Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB (2003) Role of the γ-phosphate of ATP in triggering protein folding by GroEL–GroES: function, structure and energetics. EMBO J 22(19):4877–4887

    Article  CAS  PubMed  Google Scholar 

  84. Chapman E, Farr GW, Fenton WA, Johnson SM, Horwich AL (2008) Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state. Proc Natl Acad Sci USA 105(49):19205–19210

    Article  CAS  PubMed  Google Scholar 

  85. Lorimer G (1997) Folding with a two-stroke motor. Nature 388:720–722

    Article  CAS  PubMed  Google Scholar 

  86. Taguchi H (2005) Chaperonin GroEL meets the substrate protein as a “load” of the rings. J Biochem 137:534–539

    Article  CAS  Google Scholar 

  87. Sparrer H, Buchner J (1997) How GroES regulates binding of nonnative protein to GroEL. J Biol Chem 272(22):14080–14086

    Article  CAS  PubMed  Google Scholar 

  88. Niwa T, Ying B, Saito K, Jin W, Takada S, Ueda T, Taguchi H (2009) Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci USA 106(11):4201–4206

    Article  CAS  PubMed  Google Scholar 

  89. Ellis JR, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342

    Article  CAS  PubMed  Google Scholar 

  90. Thirumalai D, Klimov DK, Dima RI (2003) Emerging ideas on the molecular basis of protein and peptide aggregation. Curr Opin Struct Biol 13:146–159

    Article  CAS  PubMed  Google Scholar 

  91. Ranson NA, Dunster NJ, Burston SG, Clarke AR (1995) Chaperonins can catalyze the reversal of early aggregation steps when a protein misfolds. J Mol Biol 250(5):581–586

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt M, Buchner J, Todd MJ, Lorimer GH, Viitanen PV (1994) On the role of GroES in the chaperonin-assisted folding reaction—3 case studies. J Biol Chem 269(14):10304–10311

    CAS  PubMed  Google Scholar 

  93. van der Vies SM, Viitanen PV, Gatenby AA, Lorimer GH, Jaenicke R (1992) Conformational states of ribulose bisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 31(14):3635–3644

    Article  PubMed  Google Scholar 

  94. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  95. Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  CAS  PubMed  Google Scholar 

  96. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  CAS  PubMed  Google Scholar 

  97. Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36(3):299–304

    Article  CAS  PubMed  Google Scholar 

  98. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    CAS  PubMed  Google Scholar 

  99. Horwich AL, Apetri AC, Fenton WA (2009) The GroEL/GroES cis cavity as a passive anti-aggregation device. FEBS Lett 583(16):2654–2662

    Article  CAS  PubMed  Google Scholar 

  100. Ellis RJ (2003) Protein folding: importance of the Anfinsen cage. Curr Biol 13(22):R881–R883

    Article  CAS  PubMed  Google Scholar 

  101. Agard DA (1993) To fold or not to fold. Science 260(5116):1903–1904

    Article  CAS  PubMed  Google Scholar 

  102. Weissman JS, Kashi Y, Fenton WA, Horwich AL (1994) GroEL-mediated protein-folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78:693–702

    Article  CAS  PubMed  Google Scholar 

  103. Betancourt MR, Thirumalai D (1999) Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J Mol Biol 287(3):627–644

    Article  CAS  PubMed  Google Scholar 

  104. Sfatos CD, Gutin AM, Abkevich VI, Shakhnovich EI (1996) Simulations of chaperonin-assisted folding. Biochemistry 35(1):334–339

    Article  CAS  PubMed  Google Scholar 

  105. Siabil H (2000) Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Curr Opin Struct Biol 10(2):251–258

    Article  Google Scholar 

  106. Thirumalai D, Lorimer GH (2001) Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct 30:249–269

    Article  Google Scholar 

  107. Stan G, Thirumalai D, Lorimer GH, Brooks BR (2003) Annealing function of GroEL: structural and bioinformatic analysis. Biophys Chem 100:453–467

    Article  CAS  PubMed  Google Scholar 

  108. Wang JD, Weissman JS (1999) Thinking outside the box: new insights into the mechanism of GroEL-mediated protein folding. Nat Struct Biol 6(7):597–600

    Article  CAS  PubMed  Google Scholar 

  109. Gulukota K, Wolynes PG (1994) Statistical mechanics of kinetic proofreading in protein folding. Proc Natl Acad Sci USA 91(20):9292–9296

    Article  CAS  PubMed  Google Scholar 

  110. Chan HS, Dill KA (1996) A simple model of chaperonin-mediated protein folding. Proteins 24(3):345–351

    Article  CAS  PubMed  Google Scholar 

  111. Gorse D (2001) Global minimization of an off-lattice potential energy function using a chaperone-based refolding method. Biopolymers 59:411–426

    Article  CAS  PubMed  Google Scholar 

  112. Hubbard TJP, Sander C (1991) The role of heat-shock and chaperone proteins in protein folding. Protein Eng 4(7):711–717

    Article  CAS  PubMed  Google Scholar 

  113. Tehver R, Thirumalai D (2008) Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation. J Mol Biol 377:1279–1295

    Article  CAS  PubMed  Google Scholar 

  114. Orland H, Thirumalai D (1997) A kinetic model for chaperonin assisted folding of proteins. J Phys I (France) 7:553–560

    Article  CAS  Google Scholar 

  115. Altschuler GM, Willison KR (2008) Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface 5(29):1391–1408

    Article  CAS  PubMed  Google Scholar 

  116. Baumketner A, Jewett A, Shea J-E (2003) Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J Mol Biol 332(3):701–713

    Article  CAS  PubMed  Google Scholar 

  117. Hayer-Hartl M, Minton AP (2006) A simple semiempirical model for the effect of molecular confinement upon the rate of protein folding. Biochemistry 45:13356–13360

    Article  CAS  PubMed  Google Scholar 

  118. Takagi F, Koga N, Takada S (2003) How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc Natl Acad Sci USA 100(20):11367–11372

    Article  CAS  PubMed  Google Scholar 

  119. Klimov DK, Newfield D, Thirumalai D (2002) Simulations of β-hairpin folding confined to spherical pores using distributed computing. Proc Natl Acad Sci USA 99(12):8019–8024

    Article  CAS  PubMed  Google Scholar 

  120. Mittala J, Best RB (2008) Thermodynamics and kinetics of protein folding under confinement. Proc Natl Acad Sci USA 105(51):20233–20238

    Article  Google Scholar 

  121. Friedel M, Sheeler DJ, Shea J-E (2003) Effects of confinement and crowding on the thermodynamics and kinetics of folding of an off-lattice protein model. J Chem Phys 118:8106–8113

    Article  CAS  Google Scholar 

  122. Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci USA 102(13):4753–4758

    Article  CAS  PubMed  Google Scholar 

  123. Xu W-X, Wang J, Wang W (2005) Folding behavior of chaperonin-mediated substrate protein. Proteins 61:777–794

    Article  CAS  PubMed  Google Scholar 

  124. Cheung MS, Thirumalai D (2006) Nanopore–protein interactions dramatically alter stability and yield of the native state in restricted spaces. J Mol Biol 357(2):632–634

    Article  CAS  PubMed  Google Scholar 

  125. Jewett AI, Baumketner A, Shea J-E (2004) Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc Natl Acad Sci USA 101(36):13192–13197

    Article  CAS  PubMed  Google Scholar 

  126. England J, Lucent D, Pande V (2008) Rattling the cage: computational models of chaperonin-mediated protein folding. Curr Opin Struct Biol 18:163–169

    CAS  PubMed  Google Scholar 

  127. England J, Pande V (2008) Potential for modulation of the hydrophobic effect inside chaperonins. Biophys J 95:3391–3399

    Article  CAS  PubMed  Google Scholar 

  128. England J, Lucent D, Pande V (2008) A role for confined water in chaperonin function. J Am Chem Assoc 130(36):11838–11839

    Article  CAS  Google Scholar 

  129. Lucent D, Vishal V, Pande VS (2007) Protein folding under confinement: a role for solvent. Proc Natl Acad Sci USA 104(25):10430–10434

    Article  CAS  PubMed  Google Scholar 

  130. Vaitheeswarana S, Thirumalai D (2008) Interactions between amino acid side chains in cylindrical hydrophobic nanopores with applications to peptide stability. Proc Natl Acad Sci USA 105(46):17636–17641

    Article  Google Scholar 

  131. Xu W, Mu Y (2008) Polar confinement modulates solvation behavior of methane molecules. J Chem Phys 128:234506

    Article  PubMed  CAS  Google Scholar 

  132. Diamant S, Peres BA, Bukau B, Goloubinoff PA (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275(28):21107–21113

    Article  CAS  PubMed  Google Scholar 

  133. Glover JR, Lindquist S (1998) HSP104, HSP70, and HSP40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82

    Article  CAS  PubMed  Google Scholar 

  134. Ben-Zvi A, De Los Rios P, Dietler G, Goloubinoff P (2004) Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual Hsp70 chaperones. J Biol Chem 279(36):37298–37303

    Article  CAS  PubMed  Google Scholar 

  135. Goloubinoff P, Mogk A, Zvi APB, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96(24):13732–13737

    Article  CAS  PubMed  Google Scholar 

  136. Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18(24):6934–6949

    Article  CAS  PubMed  Google Scholar 

  137. Krzewska J, Langer T, Liberek K (2001) Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett 489(1):92–96

    Article  CAS  PubMed  Google Scholar 

  138. Zettlmeissl G, Rudolph R, Jaenicke R (1979) Reconstitution of lactic dehydrogenase. noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18(25):5567–5571

    Article  CAS  PubMed  Google Scholar 

  139. Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson CM (2002) Kinetic partitioning of protein folding and aggregation. Nat Struct Biol 9(2):137–143

    Article  CAS  PubMed  Google Scholar 

  140. Finke JM, Roy M, Zimm BH, Jennings PA (2000) Aggregation events occur prior to stable intermediate formation during refolding of interluekin 1β. Biochemistry 39:575–583

    Article  CAS  PubMed  Google Scholar 

  141. Farr GW, Scharl EC, Schumacher RJ, Sondek S, Horwich AL (1997) Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell 89(6):927–937

    Article  CAS  PubMed  Google Scholar 

  142. Thulasiraman V, Yang C-F, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18(1):85–95

    Article  CAS  PubMed  Google Scholar 

  143. Horst R, Fenton WA, Englander SW, Wührich K, Horwich AL (2007) Folding trajectories of human dihydrofolate reductase inside the GroEL–GroES chaperonin cavity and free in solution. Proc Natl Acad Sci USA 104(52):20788–20792

    Article  CAS  PubMed  Google Scholar 

  144. Coyle JE, Texter FL, Ashcroft AE, Masselos D, Robinson CV, Radford SE (1999) GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism. Nat Struct Biol 6(7):683–690

    Article  CAS  PubMed  Google Scholar 

  145. Chen J, Walter S, Horwich AL, Smith DL (2001) Folding of malate dehydrogenase inside the GroEL–GroES cavity. Nat Struct Biol 8(8):721–728

    Article  CAS  PubMed  Google Scholar 

  146. Goldberg MS, Zhang J, Sondek S, Matthews CR, Fox RO, Horwich AL (1997) Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proc Natl Acad Sci USA 94(4):1080–1085

    Article  CAS  PubMed  Google Scholar 

  147. Lilie H, Buchner J (1995) Interaction of GroEL with a highly structured folding intermediate: iterative binding cycles do not involve unfolding. Proc Natl Acad Sci USA 92(18):8100–8104

    Article  CAS  PubMed  Google Scholar 

  148. Jewett AI, Shea J-E (2008) Do chaperonins boost protein yields by accelerating folding or preventing aggregation? Biophys J 94(8):2987–2993

    Article  CAS  PubMed  Google Scholar 

  149. Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991) Chaperonin-mediated protein folding at the surface of GroEL through a molten globule like intermediate. Nature 352:36–42

    Article  CAS  PubMed  Google Scholar 

  150. Viitanen PV, Donaldson GK, Lorimer GH, Lubben TH, Gatenby AA (1991) Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30:9716–9723

    Article  CAS  PubMed  Google Scholar 

  151. Zahn R, Perrett S, Fersht AR (1996) Conformational states bound by the molecular chaperones GroEL and SecB: a hidden unfolding (annealing) activity. J Mol Biol 261(1):43–61

    Article  CAS  PubMed  Google Scholar 

  152. Zahn R, Perrett S, Stenberg G (1996) Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science 271(5249):642–645

    Article  CAS  PubMed  Google Scholar 

  153. Jaenicke R, Seckler R (1997) Protein misassembly in vitro. Adv Protein Chem 50:1–59

    Article  CAS  PubMed  Google Scholar 

  154. Wetzel R (1996) For protein misassembly, it’s the “I” decade. Cell 86:699–702

    Article  CAS  PubMed  Google Scholar 

  155. Fink AL (1995) Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct 24:495–522

    Article  CAS  PubMed  Google Scholar 

  156. Gorovits BM, McGee WA, Horowitz PM (1998) Rhodanese folding is controlled by the partitioning of its folding intermediates. Biochimica et Biophysica Acta 1382(1):120–128

    CAS  PubMed  Google Scholar 

  157. Tandon S, Horowitz PM (1989) Reversible folding of rhodanese: presence of intermediate(s) at equilibrium. J Biol Chem 264(17):9859–9866

    CAS  PubMed  Google Scholar 

  158. Jennings PA, Wright PE (1993) Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262(5135):892–896

    Article  CAS  PubMed  Google Scholar 

  159. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor-2.1. Evidence for a two-state transition. Biochemistry 43:10428–10435

    Article  Google Scholar 

  160. Brockwell DJ, Radford SE (2007) Intermediates: ubiquitous species on folding energy landscapes? Curr Opin Struct Biol 17:30–37

    Article  CAS  PubMed  Google Scholar 

  161. Jahn TR, Radford SE (1991) The Yin and Yang of protein folding. FEBS J 43:10428–10435

    Google Scholar 

  162. Englander SW, Mayne L, Krishna MMG (2007) Protein folding and misfolding: mechanism and principles. Q Rev Biophys 40:1–41

    Article  CAS  Google Scholar 

  163. Lindberg MO, Oliveberg M (2007) Malleability of protein folding pathways: a simple reason for complex behaviour. Curr Opin Struct Biol 17(1):21–29

    Article  CAS  PubMed  Google Scholar 

  164. Netzer WJ, Hartl FU (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388:343–349

    Article  CAS  PubMed  Google Scholar 

  165. Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438:878–881

    Article  CAS  PubMed  Google Scholar 

  166. Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci USA 84(21):7524–7528

    Article  CAS  PubMed  Google Scholar 

  167. Bryngelson JD, Wolynes PG (1989) Intermediates and barrier crossing in a random energy model (with applications to protein folding). J Phys Chem 93(19):6902–6915

    Article  CAS  Google Scholar 

  168. Goldstein RA, Luthey-Schulten ZA, Wolynes PG (1989) Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc Natl Acad Sci USA 89(19):9029–9033

    Article  Google Scholar 

  169. Shea J, Onuchic JN, Brooks CL III (2000) Energetic frustration and the nature of the transition state in protein folding. J Chem Phys 113(17):7663–7671

    Article  CAS  Google Scholar 

  170. Nymeyer H, García AE, Onuchic JN (1998) Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc Natl Acad Sci USA 95(11):5921–5928

    Article  CAS  PubMed  Google Scholar 

  171. Shea J-E, Nochomovitz YD, Guo Z, Brooks CL III (1998) Exploring the space of protein folding Hamiltonians: the balance of forces in a minimalist β-barrel model. J Chem Phys 109(7):2895–2903

    Article  CAS  Google Scholar 

  172. Onuchic JN, Wolynes PG (2004) Theory of protein folding. Curr Opin Struct Biol 14(1):70–75

    Article  CAS  PubMed  Google Scholar 

  173. Mirny LA, Abkevich V, Shakhnovich EI (1996) Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model. Fold Des 1(2):103–116

    Article  CAS  PubMed  Google Scholar 

  174. Shea J, Onuchic JN, Brooks CL III (1999) Exploring the origins of topological frustration: design of a minimally frustrated model of fragment b of protein a. Proc Natl Acad Sci USA 96(22):12512–12517

    Article  CAS  PubMed  Google Scholar 

  175. Nymeyer H, Socci ND, Onuchic JN (2000) Landscape approaches for determining the ensemble of folding transition states: success and failure hinge on the degree of frustration. Proc Natl Acad Sci USA 97(2):634–639

    Article  CAS  PubMed  Google Scholar 

  176. Onuchic JN, Nymeyer H, García AE, Chahine J, Socci ND (2000) The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv Protein Chem 53:87–152

    Article  CAS  PubMed  Google Scholar 

  177. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298(5):937–953

    Article  CAS  PubMed  Google Scholar 

  178. Micheletti C, Banavar JR, Maritan A, Seno F (1999) Protein structures and optimal folding from a geometrical variational principle. Phys Rev Lett 82(16):3372–3375

    Article  CAS  Google Scholar 

  179. Stan G, Brooks BR, Thirumalai D (2005) Probing the “annealing” mechanism of GroEL minichaperone using molecular dynamics simulations. J Mol Biol 350(4):817–829

    Article  CAS  PubMed  Google Scholar 

  180. Martin J, Hartl FU (1997) The effect of macromolecular crowding on chaperonein-mediated protein folding. Proc Natl Acad Sci USA 94(4):1107–1112

    Article  CAS  PubMed  Google Scholar 

  181. Burston SG, Weissman JS, Farr GW, Fenton WA, Horwich AL (1996) Release of both native and non-native proteins from a cis-only GroEL ternary complex. Nature 383:96–99

    Article  CAS  PubMed  Google Scholar 

  182. Elcock AH (2003) Atomic-level observation of macromolecular crowding effects: escape of a protein from the GroEL cage. Proc Natl Acad Sci USA 100(5):2340–2344

    Article  CAS  PubMed  Google Scholar 

  183. Zahn R, Buckle AM, Perrett S, Johnson CM, Corrales FJ, Golbik R, Fersht AR (1996) Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci USA 93(26):15024–15029

    Article  CAS  PubMed  Google Scholar 

  184. Corrales FJ, Fersht AR (1995) The folding of GroEL-bound barnase as a model for chaperonin-mediated protein folding. Proc Natl Acad Sci USA 92(12):5326–5330

    Article  CAS  PubMed  Google Scholar 

  185. Makino Y, Taguchi H, Yoshida M (1993) Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP. FEBS Lett 336(2):363–367

    Article  CAS  PubMed  Google Scholar 

  186. Zhou H, Dill K (2001) Stabilization of proteins in confined spaces. Biochemistry 40(38):11289–11293

    Article  CAS  PubMed  Google Scholar 

  187. Eggers D, Valentine J (2001) Crowding and hydration effects on protein conformation: a study with sol–gel encapsulated proteins. J Mol Biol 314(4):911–922

    Article  CAS  PubMed  Google Scholar 

  188. Zhou H–X (2008) Protein folding in confined and crowded environments. Arch Biochem Biophys 469(1):76–82

    Article  CAS  PubMed  Google Scholar 

  189. Rathore N, Knotts T, de Pablo J (2006) Confinement effects on the thermodynamics of protein folding: Monte Carlo simulations. Biophys J 90(5):1767–1773

    Article  CAS  PubMed  Google Scholar 

  190. Zhang S-Q, Cheung MS (2007) Manipulating biopolymer dynamics by anisotropic nanoconfinement. Nano Lett 7(11):3438–3442

    Article  CAS  PubMed  Google Scholar 

  191. Cheung MS, Thirumalai D (2007) Effects of crowding and confinement on the structures of the transition state ensemble in proteins. J Phys Chem B 111(28):8250–8257

    Article  CAS  PubMed  Google Scholar 

  192. Chun SY, Strobel S, Bassford PJ, Randall LL (1993) Folding of maltose-binding protein. Evidence for the identity of the rate-determining step in vivo and in vitro. J Biol Chem 268:20855–20862

    CAS  PubMed  Google Scholar 

  193. Wang JD, Michelitsch MD, Weissman JS (1998) GroEL–GroES-mediated protein folding requires an intact central cavity. Proc Natl Acad Sci USA 95:12163–12168

    Article  CAS  PubMed  Google Scholar 

  194. Silow M, Oliveberg M (1997) Transient aggregates in protein folding are easily mistaken for folding intermediates. Proc Natl Acad Sci USA 94:6084–6089

    Article  CAS  PubMed  Google Scholar 

  195. Nawrocki J, Chu R-A, Pannell LK, Bai Y (1999) Intermolecular aggregations are responsible for the slow kinetics observed in the folding of cytocrome c at neutral ph. J Mol Biol 293:991–995

    Article  CAS  PubMed  Google Scholar 

  196. Farr GW, Fenton WA, Horwich AL (2007) Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci USA 104(13):5342–5347

    Article  CAS  PubMed  Google Scholar 

  197. Jewett AI, Shea J-E (2006) Folding on the chaperone: yield enhancement through loose binding. J Mol Biol 363(5):945–957

    Article  CAS  PubMed  Google Scholar 

  198. Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wüthrich K (2005) Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci USA 102(36):12748–12753

    Article  CAS  PubMed  Google Scholar 

  199. Boshoff A, Stephens LL, Blatch GL (2008) The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties. Int J Biochem Cell Biol 40(4):804–812

    Article  CAS  PubMed  Google Scholar 

  200. Erbse A, Dougan DA, Bukau B (2003) A folding machine for many but a master of none. Nat Struct Biol 10(2):84–86

    Article  CAS  PubMed  Google Scholar 

  201. Wang JD, Herman C, Tipton KA, Gross CA, Weissman JS (2002) Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111:1027–1039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We have greatly benefited from the input of others. I would like to thank Hideki Taguchi, Hays Rye, Ulrich Hartl, Arthur Horwich, and Adrian Apetri for providing thoughtful answers to numerous detailed questions. Hideki Taguchi and Hays Rye made corrections and Hideki Taguchi generously provided figure excerpts and access to recent unpublished solubility data from his laboratory [88]. We would also like to thank Ben Schuler and Ulrich Hartl for helpful advice and discussions. This work was supported by the NSF grant #0642086 and a grant by the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan-Emma Shea.

Appendices

Appendix A: Estimating the fraction of time proteins are exposed to the cytosol

In an earlier work, we developed a formula to describe the folding of any protein in the presence of chaperones which cyclically unfold their substrates [148]. We used this to prove that the iterative annealing model (IAM) is not optimal for, and does not explain, the chaperonin-mediated folding of aggregate-prone substrates. Instead, an optimal chaperonin would bind to its substrates only once, releasing it only upon folding, lending support to the Anfinsen cage model. Unfortunately, many simplifying assumptions were made; for example, we ignored the fact that proteins interact with a variety of chaperones other than GroEL, and we ignored the fact that some proteins remain bound to the chaperone over multiple ATPase cycles. We also implicitly assumed that sufficient GroEL chaperonins are present to handle demand, and we ignored transient stress. However, the conclusions of that study remain valid when these assumptions are relaxed. In the sections that follow we briefly review and generalize these kinetic arguments.

The many-cycle assumption

As explained earlier [21, 148], chaperonins like GroEL can reduce the time that proteins spend unprotected in the cytosol before folding by a fraction (denoted f bulk) which can be estimated from the ratios of the average time spent bound and unbound from GroEL during each cycle:

$$ f_{\text{bulk}} = {\frac{{\left\langle {t_{\text{unbound}} } \right\rangle }}{{\left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{bound}} } \right\rangle }}} $$
(1)

To justify this, we must assume that proteins undergo many cycles of binding to GroEL and release into the cytosol before folding, as suggested by [16, 80, 91, 102]. Here 〈〉 denotes the average, and t bound is the total time spent bound to the chaperone (while either immobilized or protected).

$$ \left\langle {t_{\text{bound}} } \right\rangle = \left\langle {t_{\text{hold}} } \right\rangle + \left\langle {t_{\text{protect}} } \right\rangle $$
(2)

(See Figs. 1 and 2, for definitions of t unbound, t hold, and t protect.) We considered what happens if you abandon this assumption in “The stationary iterative annealing model”.

Substrates do not always unbind from GroEL

A complication arises due the fact that some GroEL substrates (rhodanese) do not unbind during every ATPase cycle [7, 12, 180]. Suppose that f ub indicates the probability that the protein substrate can successfully unbind itself from GroEL once the GroES lid departs. (This occurs following ATP hydrolysis; see Figs. 1, caption and 2). If so, then in that case it will require 1/f ub cycles for the protein to successfully free itself from GroEL, on average, (note: 1/f ub ≥ 1). This means it would remain bound to GroEL for a duration of approximately (〈t bound〉 + 〈t unbound〉)/f ub seconds, instead of 〈t bound〉 seconds. (Minor correction: We note that during the first of these 1/f ub cycles, the protein is initially unbound, so to be precise, we should not have included one of these “unbound” time intervals.)

Once finally released, if the protein has not yet folded, it will have to rebind to GroEL requiring t unbound seconds. As long as this process occurs multiple times before folding, the arguments we have made so far continue to apply, and we can replace 〈t bound〉 in Eq. 1, with 〈t unbound〉 (1/f ub − 1) + 〈t bound〉/f ub. (The “−1” comes from the correction discussed above.) This yields:

$$ f_{\text{bulk}} = f_{\text{ub}} \times {\frac{{\left\langle {t_{\text{unbound}} } \right\rangle }}{{\left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{bound}} } \right\rangle }}} $$
(3)

For example, rhodanese in vitro escapes GroEL every four cycles on average (f ub ≈ 0.25), frequently enough so that it probably escapes GroEL a couple times before folding [180]. Rhodanese is an extraordinarily slow folder, requiring 7 min to fold on average [20], corresponding to 7–60 full, two-ring ATPase cycles and consuming at least 130 molecules of ATP [149].

We note that sometimes unbinding does not occur multiple times before folding. For example, in vivo (or in the presence of a crowding agent), rhodanese typically remains bound to GroEL until folding [7]. In that case, the situation is fundamentally different, and we have to consider the issues raised in “The stationary iterative annealing model”. Equation 3 does not apply to rhodanese in vivo. We note that this is not an issue for many stringent GroEL substrates. Others (like RuBisCo) unbind from GroEL after every ATPase cycle (f ub ≈ 1) [16].

Under steady-state conditions

In the absence of stress (“steady-state”) conditions (see “The steady-state assumption”), it is more relevant to consider:

$$ f_{\text{bulk}}^{\text{ss}} = f_{\text{ub}} \times {\frac{{\left\langle {t_{\text{unbound}} } \right\rangle }}{{\left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{protect}} } \right\rangle }}} $$
(4)

During the time interval (〈t hold〉) that proteins are either bound to the open GroEL trans ring, or bound to auxiliary chaperones like DnaK/J, they are unable to fold or aggregate and for all practical purposes, they are immobilized (although they may in fact be able to move). Under steady-state conditions we neglect to consider any time spent by the protein in these “immobilized” states; in other words, we have substituted 〈t hold〉 = 0 into Eqs. 2, 3. Temporary delays (no matter how long) which have no other effect than to immobilize the protein, should have no effect on a protein’s likelihood of eventually folding or aggregating; that is, assuming the risk of aggregation in the bulk remains constant over time. We note that under steady-state conditions, the concentration of denatured proteins, and rate of aggregation, should not fluctuate significantly over time, at least not during the time for most proteins to fold. (See “The steady-state assumption” for details. We elaborate further in “Why should we ignore immobile states?”.)

Since 〈t unbound〉 is typically far more rapid than 〈t protect〉, this is a considerable reduction (f ssbulk  ≪ 1).

The role of HSP70/HSP40 and other ancillary chaperones

For GroEL substrates, it appears that other chaperones such as trigger factor, HSP70/40 (DnaK/J) and their associated nucleotide exchange factors (GrpE), prevent unfolded protein chains from aggregating as they wait for GroEL [3, 13, 23, 25]. After being ejected from GroEL, proteins that are still unfolded are likely to bind to chaperones like DnaK/J before rebinding to GroEL. The average of the total time that proteins spend unprotected in the bulk during this time (represented by 〈t unbound〉) is a complicated function of the DnaK/J, GrpE, and dimeric trigger factor concentrations, in addition to the nucleotide binding, release, and hydrolysis rates (for example, see [75]), not to mention the length of the substrate protein (as suggested by [134]). However, as far as GroEL substrates are concerned, the only role of these auxiliary chaperones is to reduce 〈t unbound〉. Whether they are successful is a separate issue, and it does not effect our conclusion regarding the optimal behavior of GroEL. Equations 1, 3, and 4 still remain remain valid, regardless of the presence of other chaperones.

Appendix B: The steady-state assumption

As mentioned in the "Introduction", GroEL/ES performs maintenance duties in the cell and is always present at high concentrations, even in the absence of external stress [5]. Under non-stress, steady-state conditions, it seems reasonable to assume that concentration of each species of protein remains roughly constant over time; or at least these concentrations do not fluctuate significantly during the course of a single folding event. This is important for understanding the mechanism of GroEL.

Under steady-state conditions, the only way to reduce aggregation is to reduce the concentration of non-native proteins in the cell, which can only be done by reducing the average time each protein spends unprotected in the cytosol (“bulk”) before folding, 〈t bulk〉 [148, 197]. During this time, proteins are susceptible to aggregation. It is convenient to think of this as the product of the average folding time 〈t F〉 (under dilute conditions), and the fraction of that time which is spent in the bulk f bulk.

$$ \left\langle {t_{\text{bulk}} } \right\rangle = \left\langle {t_{\text{F}} } \right\rangle \times f_{\text{bulk}} $$
(5)

In this way, we can compare the benefits of folding acceleration (reducing 〈t F〉) with the benefits of sequestration/encapsulation (reducing f bulk).

Appendix C: A review of the effects of iterative denaturation

It is useful to ask: under what conditions would iterative denaturation speed up protein folding? Rephrasing earlier arguments [77, 104], let:

$$ \begin{aligned} t = & {\text{the time that has elapsed since the protein was first introduced into the cytosol in its unfolded state}} \\ P(t) = & {\text{the probability that the polymer has not yet reached a folding-committed conformation after time }}t{\text{ has elapsed under dilute conditions in the absence of chaperones}} \\ \end{aligned} $$

Assuming that the only effect a chaperone has on the protein is to completely denature it once every τ D s then the probability that the protein has not yet folded after N cycles of binding and release from the chaperone is [P(τ D)]N. In order for a protein to benefit from chaperone cycling:

$$ P(N\tau_{\text{D}} ) > \left[ {P(\tau_{\text{D}} )} \right]^{N} $$
(6)

For any protein which folds with a single well defined folding rate (\( k_{\text{F}} \), for example, two-state folders, or proteins with only short-lived intermediates) P(t) must resemble a decaying exponential \( (P(t) = e^{{ - k_{\text{F}}t }}) \). For these proteins, P( D) = [P(τ D)]N. Only proteins for which P(t) decays more slowly at long times (for example, proteins which can fall into kinetic traps) can satisfy this inequality.

It is possible to predict the average folding time, 〈t ssF 〉 in the presence of iterative denaturation (at frequency λ ssD ) for any protein, assuming the folding kinetics of that protein (under dilute conditions, P(t)) are known [148]:

$$ \left\langle {t_{\text{F}}^{\text{ss}} } \right\rangle = {\frac{1}{{\lambda_{\text{D}}^{\text{ss}} }}}\left[ {\left( {\lambda_{\text{D}}^{\text{ss}} \int\limits_{0}^{\infty } {P(t)e^{{ - \lambda_{\text{D}}^{\text{ss}} t}} } \,{\text{d}}t} \right)^{ - 1} - 1} \right]^{ - 1} $$
(7)

P(t) can be measured directly from bulk experiments, for example using florescence resonance energy transfer spectroscopy, or using enzyme assays applied to aliquots taken at regular intervals. By substituting \( P(t) = e^{{ - k_{\text{F}}t }} \), we can see again that proteins with two-state folding kinetics (rate \( k_{\text{F}} \) s−1) would not benefit from iterative denaturation (in agreement with [104]).

The frequency of denaturation, λ ssD , refers to the frequency at which proteins are denatured as a result of ATP-driven chaperonin binding and release: Specifically:

$$ \lambda_{\text{D}}^{\text{ss}} \approx 1/\left\langle {\tau_{\text{D}}^{\text{ss}} } \right\rangle \quad {\text{where:}} $$
(8)
$$ \left\langle {\tau_{\text{D}}^{\text{ss}} } \right\rangle = \left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{protect}} } \right\rangle $$
(9)
$$ = \left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{protect}} } \right\rangle + \left\langle {t_{\text{hold}} } \right\rangle \ldots {\text{ in the limit that}}\left\langle {t_{\text{hold}} } \right\rangle \to 0 $$
(10)

The “ss” superscripts are to remind us that under steady-state conditions, we should not consider the time proteins spend while immobilized during each cycle 〈t hold〉 (See “Why should we ignore immobile states?”. Note that the actual folding time 〈t F〉 can be inferred from 〈t ssF 〉 by estimating the fraction of time a protein would have spent immobilized while folding. See Eq. 11 of “Why should we ignore immobile states?”)

The chaperone-mediated folding of aggregate prone substrates

Recall that under steady-state conditions, chaperones ability to prevent aggregation is entirely determined by how much chaperones reduce the time proteins spend in the bulk before folding, 〈t bulk〉 = 〈t F〉 × f bulk = 〈t ssF 〉 × f ssbulk (See “Why should we ignore immobile states?”.) Reducing the value of 〈t bulk〉 reduces aggregation and increases the yield. If we restrict ourselves further to the set of proteins which do not remain bound during every ATPase cycle, then we can use Eq. 4. Substituting it, along with Eqs. 7 and 10, results in a formula for 〈t bulk〉 which decreases as the cycle frequency λ ssD  ≈ 1/(〈t bound〉 + 〈t protect〉) decreases; the result is proportional to Eq. 7 from [148]. In other words, for this broad set of proteins, GroEL/ES should cycle slowly (maximize 〈t protect〉). There is no incentive to cycle rapidly, except perhaps to free up chaperones and assist the folding of other proteins. This contradicts the conclusion of the traditional IAM. Again, the cycle for GroEL/ES requires on the order of 101 s.

Appendix D: Why should we ignore immobile states?

Simple kinetics models of GroEL/ES behavior assume that the entire time a protein is bound to GroEL it is either able to continue folding [148], or immobilized [113]. In reality, proteins may spend a fraction of their time with GroEL mobile or immobilized. However, under steady-state conditions, these immobile states have no effect. Increasing or decreasing the duration of these frozen states do not tip the balance toward one outcome (folding) or the other (aggregation), at least not under steady-state conditions when, presumably, the rate of transition to either of these outcomes is not changing over time.

Motivating example

We have argued Eqs. 12 and 4 without providing an algebraic proof. If it helps the reader, we can motivate Eqs. 12, and 4, by calculating both 〈t ssF 〉 and f ssbulk , and show that their product remains equal to 〈t bulk〉 from Eq. 5:

To motivate this with a concrete example, it is convenient to imagine a hypothetical chaperone system which does not immobilize its substrates, (〈t bulk〉 = 0), and which otherwise behaves exactly like the GroEL/ES-DnaK/J chaperone system in all other respects, denaturing protein substrates with every ATPase cycle. Of course, the resulting reduction in time spent bound to the chaperone might free up chaperones and increase chaperone availability. However, we ignore this effect here. Here, we imagine a hypothetical chaperone for which 〈t unbound〉 and 〈t protect〉 remain unaffected as 〈t hold〉 → 0.

t ssF 〉 and f ssbulk denote the folding time, and fraction of time spent in the bulk, folding under the influence of this new hypothetical chaperone system (with 〈t hold〉 = 0). The formula for f ssbulk is given in Eq. 4 of “Estimating the fraction of time proteins are exposed to the cytosol”. The formula for 〈t ssF 〉 is given in Eq. 7 of “A review of the effects of iterative denaturation”. How does this 〈t ssF 〉 compare with the real folding time in vivo, 〈t F〉?

In the presence of this hypothetical chaperone system, proteins would fold faster because they no longer have to spend a certain fraction of each cycle immobilized and waiting. Assuming many cycles of binding and release, this should reduce the folding time by the fraction of time proteins are not immobilized during each cycle (shown in parenthesis in Eq. 11).

$$ \left\langle {t_{\text{F}}^{\text{ss}} } \right\rangle = \left\langle {t_{\text{F}} } \right\rangle \times \left( {{\frac{{\left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{protect}} } \right\rangle }}{{\left\langle {t_{\text{unbound}} } \right\rangle + \left\langle {t_{\text{hold}} } \right\rangle + \left\langle {t_{\text{protect}} } \right\rangle }}}} \right) $$
(11)

Multiplying Eqs. 4 and 11, and substituting Eq. 2, recovers Eqs. 3 and 5:

$$ \left\langle {t_{\text{bulk}} } \right\rangle = \left\langle {t_{\text{F}}^{\text{ss}} } \right\rangle \times f_{\text{bulk}}^{\text{ss}} $$
(12)

This shows that ignoring immobilized states (or equivalently, setting 〈t hold〉 = 0) has no effect on 〈t bulk〉. Under the influence of such a chaperone, proteins would spend the same amount of time in the bulk before folding 〈t bulk〉, and would be no more or less likely to aggregate. Thus, a hypothetical chaperone without immobilized states would prevent just as much aggregation as a real chaperone (under steady-state conditions). Hence, we can justifiably ignore these immobilized states.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jewett, A.I., Shea, JE. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell. Mol. Life Sci. 67, 255–276 (2010). https://doi.org/10.1007/s00018-009-0164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0164-6

Keywords

Navigation