Skip to main content

Human Health Effects of Chronic Cadmium Exposure

  • Chapter
  • First Online:
Cadmium Toxicity Mitigation

Abstract

Cadmium (Cd) is a hazardous unnecessary transition metal that is harmful to people and animals. Cadmium is naturally prevalent in the environment and is frequently obtained from agriculture and industrial processes. Humans are typically exposed to Cd through filthy food and water, inhalation, and cigarette smoking. Cadmium is stored in plants and animals and has a lengthy half-life of 25–30 years. Observational l evidence suggests that occupational and environmental Cd exposure may be connected to malignancies of the breast, lung, prostate, nasopharynx, pancreas, and kidney, as well as an increased risk of osteoporosis. Because of their capacity to generate metallothioneins (MT), which are Cd-inducible proteins that protect cells, the liver and kidneys are particularly sensitive to the harmful effects of Cd. Cadmium-induced oxidative stress is likely to contribute to a variety of liver and kidney illnesses, and mitochondrial damage is a possible mechanism, as these organelles play an important role in the generation of reactive oxygen species (ROS) and are important intracellular targets for Cd. The determination of dietary Cd consumption is a critical step in estimating Cd body burden and associated health consequences. Chronic Cd exposure is known to have a substantial influence on the kidneys, which are the most vulnerable to Cd toxicity. Urinary Cd (UC), the proportional relationship between Cd accumulation in the kidneys and Cd excretion via urine, is a reliable indicator of Cd exposure. This chapter outlines the numerous pathways of Cd exposure, their impact on human health, and the use of several biomarkers to measure Cd exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedi T, Mojiri A (2020) Cadmium uptake by wheat (triticum aestivum l.): an overview. Plants 9:500

    Article  CAS  Google Scholar 

  • Abernethy DR, Destefano AJ, Cecil TL, Zaidi K, Williams RL, UMIA P (2010) Metal impurities in food and drugs. Pharm Res 27:750–755

    Article  CAS  Google Scholar 

  • Adsera A (2004) Changing fertility rates in developed countries. The impact of labor market institutions. J Popul Econ 17:17–43

    Article  Google Scholar 

  • Agbadua OG, Obi F, Amadi CS, Taiwo S, Ehikhamhen D, Malio-Oliseh G (2020) Heavy metal interactions on cadmium-induced renal osteodystrophy and anaemia in rats. NISEB J 19(3)

    Google Scholar 

  • Aleksandrov AP, Mirkov I, Tucovic D, Kulas J, Zeljkovic M, Popovic D et al (2021) Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: cadmium as an example. Immunol Lett 240:106–122

    Article  Google Scholar 

  • Al-Janabi AIH, Khadairi MM, Al-Amari MJ, Hirallah AAK (2020) Curative role of vitamin (C) in reduction of cadmium toxicity on the levels of some liver functions, lipid peroxidation and antioxidants enzymes in in vivo condition. Plant Arch 20(2):936–940

    Google Scholar 

  • Almenara CC, Oliveira TF, Padilha AS (2020) The role of antioxidants in the prevention of cadmium-induced endothelial dysfunction. Curr Pharm Des 26(30):3667–3675

    Article  Google Scholar 

  • Al-Rmalli SW, Jenkins R, Haris PI (2012) Dietary intake of cadmium from Bangladeshi foods. J Food Sci 77:T26–T33

    Article  CAS  Google Scholar 

  • Alshehri AS, El-Kott AF, El-Gerbed MS, El-Kenawy AE, Albadrani GM, Khalifa HS (2022) Kaempferol prevents cadmium chloride-induced liver damage by upregulating Nrf2 and suppressing NF-κB and keap1. Environ Sci Pollut Res 29:1–13

    Article  Google Scholar 

  • Alterio J, Masson J, Diaz J, Chachlaki K, Salman H, Areias J, Al Awabdh S, Emerit MB, Darmon M (2015) Yif1b is involved in the anterograde traffic pathway and the golgi architecture. Traffic 16:978–993

    Article  CAS  Google Scholar 

  • Andrulewicz-Botulińska E, Wiśniewska R, Brzóska MM, Rogalska J, Galicka A (2018) Beneficial impact of zinc supplementation on the collagen in the bone tissue of cadmium-exposed rats. J Appl Toxicol 38:996–1007

    Article  Google Scholar 

  • Arao T (2019) Mitigation strategies for cadmium and arsenic in rice. In: Cadmium toxicity: new aspects in human disease, rice contamination, and cytotoxicity. Springer, pp 125–138

    Chapter  Google Scholar 

  • ATSDR (2012) Toxicological profile for cadmium. ATSDR, Atlanta, GA

    Google Scholar 

  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 227

    Google Scholar 

  • Banzato TP, Godinho AF, Da Silva Zacarin ECM, Perobelli JE, Fernandez CDB, Favareto APA, Kempinas WDG (2012) Sperm quality in adult male rats exposed to cadmium in utero and lactation. J Toxicol Environ Health Part A 75:1047–1058

    Article  CAS  Google Scholar 

  • Baptist AP, Busse PJ (2018) Asthma over the age of 65: all’s well that ends well. J Allergy Clin Immunol Pract 6(3):764–773

    Article  Google Scholar 

  • Begg SL, Eijkelkamp BA, Luo Z, Counago RM, Morey JR, Maher MJ, Ong C-LY, Mcewan AG, Kobe B, O’mara ML (2015) Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in streptococcus pneumoniae. Nat Commun 6:6418

    Article  CAS  Google Scholar 

  • Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Public Health

    Google Scholar 

  • Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A (2015) Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. APJCP 16:9–21

    Google Scholar 

  • Boehm T (2008) Thymus development and function. Curr Opin Immunol 20(2):178–184

    Article  CAS  Google Scholar 

  • Bolan NS, Makino T, Kunhikrishnan A, Kim P-J, Ishikawa S, Murakami M et al (2013) Cadmium contamination and its risk management in rice ecosystems. Adv Agron 119:183–273

    Article  CAS  Google Scholar 

  • Bonaventura P, Lamboux A, Albarede F, Miossec P (2018) Differential effects of TNF-α and IL-1β on the control of metal metabolism and cadmium-induced cell death in chronic inflammation. PLoS One 13(5):e0196285

    Article  Google Scholar 

  • Branca JJ, Fiorillo C, Carrino D, Paternostro F, Taddei N, Gulisano M, Pacini A, Becatti M (2020) Cadmium-induced oxidative stress: focus on the central nervous system. J Antioxid Act 9:492

    Article  CAS  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  • Cao Z, Cui S, Lu X, Chen X, Yang X, Cui J, Zhang G (2018) Effects of occupational cadmium exposure on workers’ cardiovascular system. Zhonghua lao dong wei sheng zhi ye bing za zhi=Zhonghua laodong weisheng zhiyebing zazhi=Chin J Ind Hyg Occup Dis 36:474–477

    CAS  Google Scholar 

  • Carlsen E, Giwercman A, Keiding N, Skakkebæk NE (1992) Evidence for decreasing quality of semen during past 50 years. Br Med J 305(6854):609–613

    Article  CAS  Google Scholar 

  • Chen S, Liu G, Long M, Zou H, Cui H (2018) Alpha lipoic acid attenuates cadmium-induced nephrotoxicity via the mitochondrial apoptotic pathways in rat. J Inorg Biochem 184:19–26

    Article  CAS  Google Scholar 

  • Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211:54–65

    Article  CAS  Google Scholar 

  • Chunhabundit R (2016) Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol Res 32:65–72

    Article  CAS  Google Scholar 

  • Confalonieri P, Volpe MC, Jacob J, Maiocchi S, Salton F, Ruaro B et al (2022) Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells 11(13):2095

    Article  CAS  Google Scholar 

  • Corsini E, Roggen EL (2017) Overview of in vitro assessment of immunotoxicity. Curr Opin Toxicol 5:13–18

    Article  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  Google Scholar 

  • Della Chiara G, Gervasoni F, Fakiola M, Godano C, D’oria C, Azzolin L, Bonnal RJP, Moreni G, Drufuca L, Rossetti G (2021) Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by yap/taz. Nat Commun 12:2340

    Article  CAS  Google Scholar 

  • Dong Q, Fang J, Huang F, Cai K (2019) Silicon amendment reduces soil cd availability and cd uptake of two pennisetum species. IJERPH 16:1624

    Article  CAS  Google Scholar 

  • Dong A, Dong H, He H, Dong A, Yan J, Huo J (2023) Effects of cadmium on kidney function of the freshwater turtles Mauremys reevesii. Biol Trace Elem Res 201(6):3000–3005. https://doi.org/10.1007/s12011-022-03397-y

    Article  CAS  Google Scholar 

  • Đukić-Ćosić D, Baralić K, Javorac D, Djordjevic AB, Bulat Z (2020) An overview of molecular mechanisms in cadmium toxicity. Curr Opin Toxicol 19:56–62

    Article  Google Scholar 

  • El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N et al (2022) Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol 52(5):675–726

    Article  Google Scholar 

  • ElMahdy MK, Zaki MO, Al-Karmalawy AA, Abdo W, Alnasser SM, Antar SA (2022) Glimepiride ameliorates renal toxicity induced by cadmium in mice: modulation of Jun N terminal kinase (JNK)/nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinases (PI3K)/protein kinase (AKT) pathways. Life Sci 311:121184

    Article  CAS  Google Scholar 

  • European Food Safety Authority (2012) Cadmium dietary exposure in the European population. EFSA J 10(1):2551

    Article  Google Scholar 

  • FAO/WHO (2010) Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications: Meeting report: World Health Organization

    Google Scholar 

  • Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA (2019) Cadmium in human diseases: it’s more than just a mere metal. Indian J Clin Biochem 34:371–378

    Article  CAS  Google Scholar 

  • Filippini T, Torres D, Lopes C, Carvalho C, Moreira P, Naska A, Kasdagli M-I, Malavolti M, Orsini N, Vinceti M (2020) Cadmium exposure and risk of breast cancer: a dose-response meta-analysis of cohort studies. Environ Int 142:105879

    Article  CAS  Google Scholar 

  • Fisch H, Braun SR (2013) Trends in global semen parameter values. Asian J Androl 15(2):169

    Article  Google Scholar 

  • Florea A-M, Büsselberg D (2006) Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 19:419–427

    Article  CAS  Google Scholar 

  • Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C (2020) Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: a toxicogenomics study in a human neuronal cell model. Neurotoxicology 76:162–173

    Article  CAS  Google Scholar 

  • Franchimont D (2004) Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann N Y Acad Sci 1024(1):124–137

    Article  CAS  Google Scholar 

  • Fréry N, Saoudi A, Garnier R, Zeghnoun A, Falq G, Guldner L (2010) Exposure of the French population to environmental pollutants. Environmental components of the French National Survey on Nutrition and Health–Initial results. French Institute for Public Health Surveillance, Saint-Maurice, France

    Google Scholar 

  • Gallagher CM, Meliker JR (2010) Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspect 118(12):1676–1684

    Article  CAS  Google Scholar 

  • Gallagher CM, Kovach JS, Meliker JR (2008) Urinary cadmium and osteoporosis in US women ≥ 50 years of age: NHANES 1988–1994 and 1999–2004. Environ Health Perspect 116(10):1338–1343

    Article  CAS  Google Scholar 

  • Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. BBRC 482:419–425

    CAS  Google Scholar 

  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782

    Article  CAS  Google Scholar 

  • Goering P, Waalkes M, Klaassen C (1995) Toxicology of cadmium. In: Toxicology of metals: biochemical aspects. Springer, pp 189–214

    Chapter  Google Scholar 

  • Gonçalves AL, Pires JC, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Grau-Perez M, Pichler G, Galan-Chilet I, Briongos-Figuero LS, Rentero-Garrido P, Lopez-Izquierdo R et al (2017) Urine cadmium levels and albuminuria in a general population from Spain: a gene-environment interaction analysis. Environ Int 106:27–36

    Article  CAS  Google Scholar 

  • Gutsch A, Zouaghi S, Renaut J, Cuypers A, Hausman J-F, Sergeant K (2018) Changes in the proteome of medicago sativa leaves in response to long-term cadmium exposure using a cell-wall targeted approach. Int J Mol Sci 19:2498

    Article  Google Scholar 

  • Hayat SMG, Bianconi V, Pirro M, Sahebkar A (2019) Stealth functionalization of biomaterials and nanoparticles by cd47 mimicry. Int J Pharm 569:118628

    Article  Google Scholar 

  • He P, Lu Y, Liang Y, Chen B, Wu M, Li S et al (2013) Exposure assessment of dietary cadmium: findings from Shanghainese over 40 years, China. BMC Public Health 13:1–11

    Article  CAS  Google Scholar 

  • He T, Shen H, Zhu J, Zhu Y, He Y, Li Z, Lu H (2019) Geniposide attenuates cadmium-induced oxidative stress injury via Nrf2 signaling in osteoblasts. Mol Med Rep 20(2):1499–1508

    CAS  Google Scholar 

  • He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, Liu Z (2020) Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ Toxicol 35(4):487–494

    Article  CAS  Google Scholar 

  • Heinrichs H, Schulz-Dobrick B, Wedepohl K (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim Cosmochim Acta 44(10):1519–1533

    Article  CAS  Google Scholar 

  • Hernández-Cruz EY, Arancibia-Hernández YL, Loyola-Mondragón DY, Pedraza-Chaverri J (2022) Oxidative stress and its role in Cd-induced epigenetic modifications: use of antioxidants as a possible preventive strategy. Oxygen 2(2):177–210

    Article  Google Scholar 

  • Hocaoğlu-Özyiğit A, Genç BN (2020) Cadmium in plants, humans and the environment. Front Life Sci Relat Technol 1(1):12–21

    Google Scholar 

  • Hoffmann L, Putzke H-P, Kampehl H-J, Russbült R, Gase P, Simonn C et al (1985) Carcinogenic effects of cadmium on the prostate of the rat. J Cancer Res Clin Oncol 109:193–199

    Article  CAS  Google Scholar 

  • Horiguchi H (2019) Cadmium exposure and its effects on the health status of rice farmers in Akita prefecture. In: Cadmium toxicity: new aspects in human disease, rice contamination, and cytotoxicity. Springer, pp 75–83

    Chapter  Google Scholar 

  • Hossein-Khannazer N, Azizi G, Eslami S, Alhassan Mohammed H, Fayyaz F, Hosseinzadeh R et al (2020) The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 42(1):1–8

    Article  CAS  Google Scholar 

  • Imura J, Tsuneyama K, Ueda Y (2019) Novel pathological study of cadmium nephropathy of Itai-Itai disease. In: Cadmium toxicity: new aspects in human disease, rice contamination, and cytotoxicity. Springer, pp 39–50

    Chapter  Google Scholar 

  • Iradukunda A, Zhang D, Proshad R, Mperejekumana P (2021) A review on cadmium contamination in soil and bioaccumulation by tobacco, its source, toxicity and health risk. Asian J Plant Sci Res 11(5):154–163

    CAS  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11:255–277

    Article  CAS  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208

    Article  Google Scholar 

  • Jenardhanan P, Panneerselvam M, Mathur PP (2016) Effect of environmental contaminants on spermatogenesis.. In: Paper presented at the Seminars in cell & developmental biology

    Google Scholar 

  • Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238(3):272–279

    Article  CAS  Google Scholar 

  • Karazivan P, Dumez V, Flora L, Pomey M-P, Del Grande C, Ghadiri DP et al (2015) The patient-as-partner approach in health care: a conceptual framework for a necessary transition. Acad Med 90(4):437–441

    Article  Google Scholar 

  • Karunakaran C, Dhanalakshmi R (2009) Selectivity in photocatalysis by particulate semiconductors. Cent Eur J Chem 7:134

    CAS  Google Scholar 

  • Keshav Krishna A, Rama Mohan K (2016) Distribution, correlation, ecological and health risk assessment of heavy metal contamination in surface soils around an industrial area, Hyderabad, India. Environ Earth Sci 75:1–17

    Article  CAS  Google Scholar 

  • Kim M, Wolt J (2011) Probabilistic risk assessment of dietary cadmium in the South Korean population. Food Addit Contam Part A 28:62–70

    Article  CAS  Google Scholar 

  • Kim K, Melough MM, Vance TM, Noh H, Koo SI, Chun OK (2018) Dietary cadmium intake and sources in the US. Nutrients 11(1):2

    Article  Google Scholar 

  • Kim J, Song H, Lee J, Kim YJ, Chung HS, Yu JM et al (2023) Smoking and passive smoking increases mortality through mediation effect of cadmium exposure in the United States. Sci Rep 13(1):3878

    Article  CAS  Google Scholar 

  • Knez J (2013) Endocrine-disrupting chemicals and male reproductive health. Reprod Biomed Online 26(5):440–448

    Article  CAS  Google Scholar 

  • Knoell DL, Wyatt TA (2021) The adverse impact of cadmium on immune function and lung host defense. In: Paper presented at the Seminars in Cell & Developmental Biology

    Google Scholar 

  • Koch W, Karim MR, Marzec Z, Miyataka H, Himeno S, Asakawa Y (2016) Dietary intake of metals by the young adult population of eastern Poland: results from a market basket study. J Trace Elem Med Biol 35:36–42

    Article  CAS  Google Scholar 

  • Kodavanti PRS, Loganathan BG (2017) Organohalogen pollutants and human health. In: Quah SR, Cockerham WC (eds) The international encyclopedia of public health, vol 5. Springer, pp 359–366

    Chapter  Google Scholar 

  • Kubier A, Wilkin RT, Pichler T (2019) Cadmium in soils and groundwater: a review. J Appl Geochem 108:104388

    Article  CAS  Google Scholar 

  • Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM (2011) Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am J Physiol Regul 300:R21–R31

    CAS  Google Scholar 

  • Laouali N, Benmarhnia T, Lanphear BP, Oulhote Y (2023) Associations with blood lead and urinary cadmium concentrations in relation to mortality in the US population: A causal survival analysis with G-computation. Toxics 11(2):133

    Article  CAS  Google Scholar 

  • Lawless L, Xie L, Zhang K (2023) The inter-and multi-generational epigenetic alterations induced by maternal cadmium exposure. Front Cell Dev Biol 11:1148906

    Article  Google Scholar 

  • Li X, Zheng S, Wu G (2020) Amino acid metabolism in the kidneys: nutritional and physiological significance. In: Amino acids in nutrition and health: amino acids in systems function and health. Springer, pp 71–95

    Chapter  Google Scholar 

  • Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y (2022) Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 348:95–114

    Article  CAS  Google Scholar 

  • Lin H-C, Hao W-M, Chu P-H (2021) Cadmium and cardiovascular disease: an overview of pathophysiology, epidemiology, therapy, and predictive value. Rev Port Cardiol (Engl Ed) 40(8):611–617

    Article  Google Scholar 

  • Lokhande B, Patil P, Uplane M (2004) Studies on cadmium oxide sprayed thin films deposited through nonaqueous medium. Mater Chem Phys 84:238–242

    Article  CAS  Google Scholar 

  • Lordan R, Zabetakis I (2022) Cadmium: A focus on the Brown crab (Cancer pagurus) industry and potential human health risks. Toxics 10(10):591

    Article  CAS  Google Scholar 

  • Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H et al (2022) The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int J Mol Sci 23(21):13491

    Article  CAS  Google Scholar 

  • Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P (2016) Risk factors for lung cancer worldwide. Eur Respir J 48(3):889–902

    Article  Google Scholar 

  • Malin AJ, Wright RO (2018) The developmental neurotoxicity of cadmium, Handbook of developmental neurotoxicology. Elsevier, pp 407–412

    Book  Google Scholar 

  • Mao W, Zhang N, Zhou F, Li W, Liu H, Feng J, Zhou L, Wei C, Pan Y, He Z (2011) Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells. HET 30:920–929

    CAS  Google Scholar 

  • Marzec Z, Łukasiewicz M (2010) Cadmium, lead and nickel in food rations of the canteens of welfare institutions. Bromat Chem Toksykol 3:281–286

    Google Scholar 

  • Matović V, Buha A, Bulat Z, Đukić-Ćosić D (2011) Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium. Arhiv za higijenu rada i toksikologiju 62:65–75

    Article  Google Scholar 

  • Menke A, Muntner P, Silbergeld EK, Platz EA, Guallar E (2009) Cadmium levels in urine and mortality among US adults. Environ Health Perspect 117(2):190–196

    Article  CAS  Google Scholar 

  • Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R (2022) Liver organ-on-chip models for toxicity studies and risk assessment. Lab Chip 22:2423

    Article  CAS  Google Scholar 

  • Messner B, Türkcan A, Ploner C, Laufer G, Bernhard D (2016) Cadmium overkill: autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cell Mol Life Sci 73:1699–1713

    Article  CAS  Google Scholar 

  • Mężyńska M, Brzóska MM, Rogalska J, Piłat-Marcinkiewicz B (2018) Extract from aronia melanocarpa l. Berries prevents cadmium-induced oxidative stress in the liver: a study in a rat model of low-level and moderate lifetime human exposure to this toxic metal. Nutrients 11:21

    Article  Google Scholar 

  • Monteiro C, Ferreira De Oliveira JMP, Pinho F, Bastos V, Oliveira H, Peixoto F, Santos C (2018) Biochemical and transcriptional analyses of cadmium-induced mitochondrial dysfunction and oxidative stress in human osteoblasts. J Toxicol Environ Health Part A 81:705–717

    Article  CAS  Google Scholar 

  • Moon C-S, Yang H-R, Nakatsuka H, Ikeda M (2016) Time trend of cadmium intake in Korea. Environ Health Prev Med 21:118–128

    Article  CAS  Google Scholar 

  • Munisamy R, Ismail SNS, Praveena SM (2013) Cadmium exposure via food crops: a case study of intensive farming area. Am J Appl Sci 10:1252–1262

    Article  Google Scholar 

  • Nasirzadeh L, Kvarnheden A, Sorkhilaleloo B, Hervan EM, Fatehi F (2022) Foliar-applied selenium nanoparticles can alleviate soil-cadmium stress through physio-chemical and stomatal changes to optimize yield, antioxidant capacity, and fatty acid profile of wheat (triticum aestivum l.). J Soil Sci Plant Nutr 22:2469–2480

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation

    Google Scholar 

  • Nazima B, Manoharan V, Miltonprabu S (2016) Oxidative stress induced by cadmium in the plasma, erythrocytes and lymphocytes of rats: attenuation by grape seed proanthocyanidins. HET 35:428–447

    CAS  Google Scholar 

  • Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G, Ramachandran A, Jaeschke H (2023) Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch Toxicol 97:1–16

    Article  CAS  Google Scholar 

  • Niede R, Benbi DK (2022) Integrated review of the nexus between toxic elements in the environment and human health. AIMS Public Health 9(4):758

    Article  Google Scholar 

  • Ning B, Yu T, Zhang S, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B (2021) A smartphone-read ultrasensitive and quantitative saliva test for covid-19. Sci Adv 7:3703

    Article  Google Scholar 

  • Niture S, Lin M, Qi Q, Moore JT, Levine KE, Fernando RA, Kumar D (2021) Role of autophagy in cadmium-induced hepatotoxicity and liver diseases. J Toxicol 2021:9564297

    Article  Google Scholar 

  • Nordkap L, Joensen UN, Jensen MB, Jørgensen N (2012) Regional differences and temporal trends in male reproductive health disorders: semen quality may be a sensitive marker of environmental exposures. Mol Cell Endocrinol 355(2):221–230

    Article  CAS  Google Scholar 

  • Nzengue Y, Steiman R, Rachidi W, Favier A, Guiraud P (2012) Oxidative stress induced by cadmium in the c6 cell line: role of copper and zinc. Biol Trace Elem Res 146:410–419

    Article  CAS  Google Scholar 

  • Oldiges H, Hochrainer D, Takenaka S, Oberdörster G, König H (1984) Lung carcinomas in rats after low level cadmium inhalation. Toxicol Environ Chem 9(1):41–51

    Article  CAS  Google Scholar 

  • Olsson I-M, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A (2002) Cadmium in blood and urine--impact of sex, age, dietary intake, iron status, and former smoking--association of renal effects. Environ Health Perspect 110(12):1185–1190

    Article  CAS  Google Scholar 

  • Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350

    Article  CAS  Google Scholar 

  • Patra R, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int

    Google Scholar 

  • Park E, Kim J, Kim B, Park EY (2021) Association between environmental exposure to cadmium and risk of suspected non-alcoholic fatty liver disease. Chemosphere 266:128947

    Article  CAS  Google Scholar 

  • Pietrzak S, Wójcik J, Baszuk P, Marciniak W, Wojtyś M, Dębniak T et al (2021) Influence of the levels of arsenic, cadmium, mercury and lead on overall survival in lung cancer. Biomol Ther 11(8):1160

    CAS  Google Scholar 

  • Program NT (2000) Ninth report on carcinogens. National Toxicology Program, Research Triangle Park, NC

    Google Scholar 

  • Pyatha S, Kim H, Lee D, Kim K (2022) Association between heavy metal exposure and Parkinson’s disease: a review of the mechanisms related to oxidative stress. Antioxidants 11(12):2467

    Article  CAS  Google Scholar 

  • Pysz K, Leszczyńska T, Bieżanowska-Kopeć R, Kopeć A (2016) Chemical assessment of lead, cadmium, nitrate, and nitrite intakes with daily diets of children and adolescents from orphanages in Krakow, Poland. Environ Sci Pollut Res 23:25200–25209

    Article  CAS  Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399

    Article  CAS  Google Scholar 

  • Rao RAK, Kashifuddin M (2016) Adsorption studies of Cd(II) on ball clay: comparison with other natural clays. Arab J Chem 9:S1233–S1241

    Article  CAS  Google Scholar 

  • Rennke H, Denker B (2020) Renal pathology: the essentials. Wolters Kluwer, New York

    Google Scholar 

  • Repić A, Bulat P, Antonijević B, Antunović M, Džudović J, Buha A, Bulat Z (2020) The influence of smoking habits on cadmium and lead blood levels in the Serbian adult people. Environ Sci Pollut Res 27:751–760

    Article  Google Scholar 

  • Reshma V, Mohanan P (2019) Quantum dots: applications and safety consequences. J Lumin 205:287–298

    Article  CAS  Google Scholar 

  • Reyes-Hinojosa D, Lozada-Pérez C, Cuevas YZ, López-Reyes A, Martínez-Nava G, Fernández-Torres J et al (2019) Toxicity of cadmium in musculoskeletal diseases. Environ Toxicol Pharmacol 72:103219

    Article  CAS  Google Scholar 

  • Roe FJ (1995) IARC monographs on the evaluation of carcinogenic risk to humans: beryllium, cadmium, mercury and exposures in the glass manufacturing industry, volume 58: International Agency for Research on Cancer, Lyon, France, 1993 (ISBN 92 832 1258 4.), 444 pp

    Google Scholar 

  • Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J (2009) Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177:142–152

    Article  CAS  Google Scholar 

  • Ruddle NH, Akirav EM (2009) Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J Immunol 183(4):2205–2212

    Article  CAS  Google Scholar 

  • Ryznar RJ, Phibbs L, Van Winkle LJ (2021) Epigenetic modifications at the center of the barker hypothesis and their transgenerational implications. IJERPH 18:12728

    Article  CAS  Google Scholar 

  • Saleh SR, Kandeel MM, Ghareeb D, Ghoneim TM, Talha NI, Alaoui-Sossé B, Aleya L, Abdel-Daim MM (2020) Wheat biological responses to stress caused by cadmium, nickel and lead. Sci Total Environ 706:136013

    Article  CAS  Google Scholar 

  • Salton F, Volpe MC, Confalonieri M (2019) Epithelial–mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina 55(4):83

    Article  Google Scholar 

  • Sand S, Becker W (2012) Assessment of dietary cadmium exposure in Sweden and population health concern including scenario analysis. Food Chem Toxicol 50(3–4):536–544

    Article  CAS  Google Scholar 

  • Satarug S (2018) Dietary cadmium intake and its effects on kidneys. Toxics 6(1):15

    Article  Google Scholar 

  • Satarug S (2019) Cadmium sources and toxicity, vol 7. MDPI, p 25

    Google Scholar 

  • Satarug S, Swaddiwudhipong W, Ruangyuttikarn W, Nishijo M, Ruiz P (2013) Modeling cadmium exposures in low-and high-exposure areas in Thailand. Environ Health Perspect 121(5):531–536

    Article  Google Scholar 

  • Satarug S, Vesey DA, Gobe GC, Phelps KR (2023) Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 97(2):329–358

    Article  CAS  Google Scholar 

  • Shahriar S, Rahman MM, Naidu R (2020) Geographical variation of cadmium in commercial rice brands in Bangladesh, Human health risk assessment. Sci Total Environ 716,:137049

    Google Scholar 

  • Shi Z, Carey M, Meharg C, Williams PN, Signes-Pastor AJ, Triwardhani EA et al (2020) Rice grain cadmium concentrations in the global supply-chain. In: Exposure and health, vol 12. Springer, pp 869–876

    Google Scholar 

  • Sinicropi MS, Amantea D, Caruso A, Saturnino C (2010) Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch Toxicol 84:501–520

    Article  CAS  Google Scholar 

  • Sirot V, Samieri C, Volatier J-L, Leblanc J-C (2008) Cadmium dietary intake and biomarker data in French high seafood consumers. J Expo Sci Environ Epidemiol 18(4):400–409

    Article  CAS  Google Scholar 

  • Skogheim TS, Weyde KVF, Engel SM, Aase H, Surén P, Øie MG et al (2021) Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ Int 152:106468

    Article  CAS  Google Scholar 

  • Song C, Wu L, Xie Y, He J, Chen X, Wang T, Lin Y, Jin T, Wang A, Liu Y (2017) Air pollution in china: status and spatiotemporal variations. Environ Pollut 227:334–347

    Article  CAS  Google Scholar 

  • Souza-Arroyo V, Fabián JJ, Bucio-Ortiz L, Miranda-Labra RU, Gomez-Quiroz LE, Gutiérrez-Ruiz MC (2022) The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022:153339

    Article  Google Scholar 

  • Sun H, Wang D, Zhou Z, Ding Z, Chen X, Xu Y et al (2016) Association of cadmium in urine and blood with age in a general population with low environmental exposure. Chemosphere 156:392–397

    Article  CAS  Google Scholar 

  • Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H (2022) Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology 2022:153136

    Article  Google Scholar 

  • Suwazono Y, Nogawa K, Uetani M, Kido T, Nakagawa H (2011) Reassessment of the threshold of urinary cadmium by using hybrid approach in a cadmium non-polluted area in Japan. Int J Hyg Environ Health 214(2):175–178

    Article  CAS  Google Scholar 

  • Taha MM, Mahdy-Abdallah H, Shahy EM, Ibrahim KS, Elserougy S (2018) Impact of occupational cadmium exposure on bone in sewage workers. Int J Occup Environ Health 24(3–4):101–108

    Article  CAS  Google Scholar 

  • Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315

    Article  CAS  Google Scholar 

  • Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G et al (2018) Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res 162:240–260

    Article  CAS  Google Scholar 

  • Udi OA, Efekemo O, Orororo OC (2022) Changes in liver Histomorphology, hematological parameters and lipid profile of cadmium-exposed rats treated with combined leaf extract of Vernonia amygdalina and Occimum gratissimum. Asian J Med Health 20(11):195–203

    Google Scholar 

  • Vacchi-Suzzi C, Kruse D, Harrington J, Levine K, Meliker JR (2016) Is urinary cadmium a biomarker of long-term exposure in humans? A review. Curr Environ Health Rep 3:450–458

    Article  CAS  Google Scholar 

  • Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  • Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79(1–4):241–244

    Article  CAS  Google Scholar 

  • Waalkes MP, Rehm S (1992) Carcinogenicity of oral cadmium in the male Wistar (WFNCr) rat: effect of chronic dietary zinc deficiency. Fundam Appl Toxicol 19(4):512–520

    Article  CAS  Google Scholar 

  • Waalkes MP, Rehm S (1994) Cadmium and prostate cancer. J Toxicol Environ Health 43(3):251–269

    Article  CAS  Google Scholar 

  • Waalkes MP, Rehm S, Riggs CW, Bare RM, Devor DE, Poirier LA et al (1988) Cadmium carcinogenesis in male Wistar [Crl:(WI) BR] rats: dose-response analysis of tumor induction in the prostate and testes and at the injection site. Cancer Res 48(16):4656–4663

    CAS  Google Scholar 

  • Waalkes MP, Anver M, Diwan BA (1999) Carcinogenic effects of cadmium in the noble (NBL/Cr) rat: induction of pituitary, testicular, and injection site tumors and intraepithelial proliferative lesions of the dorsolateral prostate. Toxicol Sci 52(2):154–161

    Article  CAS  Google Scholar 

  • Wang L, He L, Mishra A, Li C (2009) Active contours driven by local gaussian distribution fitting energy. IEEE Signal Process Lett 89:2435–2447

    Google Scholar 

  • Wang B, Li Y, Shao C, Tan Y, Cai L (2012) Cadmium and its epigenetic effects. Curr Med Chem 19:2611–2620

    Article  CAS  Google Scholar 

  • Wang X, Mukherjee B, Park SK (2018) Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among US adults in NHANES 2003–2014. Environ Int 121:683–694

    Article  CAS  Google Scholar 

  • Wang H, Abel GM, Storm DR, Xia Z (2019) Cadmium exposure impairs adult hippocampal neurogenesis. Toxicol Sci 171(2):501–514

    Article  CAS  Google Scholar 

  • Wang C, Cheng T, Liu H, Zhou F, Zhang J, Zhang M, Liu X, Shi W, Cao T (2021) Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. J Environ Sci 103:336–346

    Article  CAS  Google Scholar 

  • Wang W, Silva LM, Wang HH, Kavanaugh MA, Pottorf TS, Allard BA et al (2022) Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular-and maturation-dependent manner. Kidney Int 102(3):577–591

    Article  CAS  Google Scholar 

  • Watanabe K, Koguchi N, Gotoh Y (2000) Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn J Appl Phys 39:L79

    Article  CAS  Google Scholar 

  • WHO (2011) Who report on the global tobacco epidemic: warning about the dangers of tobacco: World Health Organization

    Google Scholar 

  • Wojciechowska-Mazurek M, Starska K, Brulińska-Ostrowska E, Plewa M, Biernat U, Karłowski K (2008) Monitoring of contamination of foodstuffs with elements noxious to human health. Part I. Wheat cereal products, vegetable products, confectionery and products for infants and children (2004 year). Rocz Panstw Zakl Hig 59(3):251–266

    CAS  Google Scholar 

  • Yan L-J, Allen DC (2021) Cadmium-induced kidney injury: oxidative damage as a unifying mechanism. Biomol Ther 11(11):1575

    CAS  Google Scholar 

  • Yang H, Wu Z, Li X, Li H, Wang L (2015) Metal binding feature of copper-induced metallothionein from fresh water crab sinopotamon henanense reveals its Cu-thionein character. Available at SSRN 4500261

    Google Scholar 

  • You X, Liu L, Li X, Du H, Nie D, Zhang X, Tong H, Wu M, Gao Y, Liao Z (2018) Immune response of interferon-γ-inducible lysosomal thiol reductase (gilt) from chinese sturgeon (acipenser sinensis) to microbial invasion and its antioxdative activity in lipopolysaccharides-treated mammalian dentritic cells. Fish Shellfish Immunol 72:356–366

    Article  CAS  Google Scholar 

  • Yu D, Zhang L, Yu G, Nong C, Lei M, Tang J et al (2020) Association of liver and kidney functions with klotho gene methylation in a population environment exposed to cadmium in China. Int J Environ Health Res 30(1):38–48

    Article  CAS  Google Scholar 

  • Zhao X, Cheng Z, Zhu Y, Li S, Zhang L, Luo Y (2015) Effects of paternal cadmium exposure on the sperm quality of male rats and the neurobehavioral system of their offspring. Exp Ther Med 10:2356–2360

    Article  CAS  Google Scholar 

  • Zhao L, Islam R, Wang Y, Zhang X, Liu L-Z (2022a) Epigenetic regulation in chromium-, nickel-and cadmium-induced carcinogenesis. J Cancer 14:5768

    Article  CAS  Google Scholar 

  • Zhao Y, Dong BR, Hao Q (2022b) Probiotics for preventing acute upper respiratory tract infections. Cochrane database of systematic reviews

    Google Scholar 

  • Zhou X, Hao W, Shi H, Hou Y, Xu Q (2015) Calcium homeostasis disruption-a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis. Oncol Res Treat 38:311–315

    Article  CAS  Google Scholar 

  • Zhu J-Q, Liu Y, Zhang J-H, Liu Y-F, Cao J-Q, Huang Z-T, Yuan Y, Bian J-C, Liu Z-P (2018) Cadmium exposure of female mice impairs the meiotic maturation of oocytes and subsequent embryonic development. Toxicol Sci 164:289–299

    Article  CAS  Google Scholar 

  • Zhu J, Huang Z, Yang F, Zhu M, Cao J, Chen J, Lin Y, Guo S, Li J, Liu Z (2021) Cadmium disturbs epigenetic modification and induces DNA damage in mouse preimplantation embryos. Ecotoxicol Environ Saf 219:112306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Javed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuhra, N. et al. (2024). Human Health Effects of Chronic Cadmium Exposure. In: Jha, A.K., Kumar, N. (eds) Cadmium Toxicity Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-031-47390-6_3

Download citation

Publish with us

Policies and ethics