Skip to main content

Biochar for Adsorptive Removal of Pharmaceuticals from Environmental Water

  • Chapter
  • First Online:
Waste Treatment in the Biotechnology, Agricultural and Food Industries

Abstract

Pharmaceutical contaminants are increasingly found in the aqua environment. The effective removal of pharmaceuticals from wastewater streams is a major worldwide challenge. Adsorption technology is considered to be a cost-effective and promising method to treat pharmaceutical pollutants from water bodies in low concentration levels. Biochar is a low-cost, sustainable adsorbent material with various economic and environmental benefits. The chapter discusses and evaluates the adsorption performance of biochar for the removal of various pharmaceuticals by considering the biochar production methods and physical and chemical characteristics of biochar. The pharmaceutical adsorption onto biochar can be improved by selecting the appropriate production method, production conditions, and biochar feedstock material. The maximum adsorption capacity of various biochar for pharmaceuticals was found to be sulfonamide 88.10 mg/g, Ibuprofen (569.6 mg/g), oxytetracycline hydrochloride (730 mg/g), diclofenac (877 mg/g), and sulfamethoxazole (24.06 mg/g). The adsorption mechanism is mainly associated with physicochemical interactions, including electrostatic and hydrophobic interactions, hydrogen bonding, π–π interaction, and pore filling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BC-PM:

Pig manure biochar

BC-PW:

Pine wood biochar

EC:

Electrical conductivity

EDX:

Energy Dispersive X-Ray Analysis

IBP:

Ibuprofen

M-BCs:

Mapel leaves biochar

MSW:

Municipal solid waste

NSAIDs:

Non-steroidal anti-inflammatory drugs

OTC:

Oxytetracycline

SCAB:

Chemically activated biochar

SD:

Sodium declofenic

SMX:

Sulfamethoxazole

SPAB:

Comprising steam-activated biochar

SPY:

Sulfapyridine

TC:

Tetracycline

References

  1. Ihsanullah, I., Khan, M. T., Zubair, M., Bilal, M., & Sajid, M. (2022). Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. Chemosphere, 289, 133196. https://doi.org/10.1016/j.chemosphere.2021.133196

    Article  CAS  Google Scholar 

  2. Khan, A. H., et al. (2022). Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environmental Research, 204, 112243. https://doi.org/10.1016/j.envres.2021.112243

    Article  CAS  Google Scholar 

  3. Bhatt, P., Pathak, V. M., Bagheri, A. R., & Bilal, M. (2021). Microplastic contaminants in the aqueous environment, fate, toxicity consequences, and remediation strategies. Environmental Research, 200, 111762. https://doi.org/10.1016/j.envres.2021.111762

    Article  CAS  Google Scholar 

  4. Huang, Y.-H., Kan, M.-W., & Craik, D. J. (2022). Chapter two - protocols for measuring the stability and cytotoxicity of cyclotides. In L. M. B. T.-M & E. Hicks (Eds.), Antimicrobial peptides (Vol. 663, pp. 19–40). Academic Press.

    Chapter  Google Scholar 

  5. Kang, Z., et al. (2022). A review on application of biochar in the removal of pharmaceutical pollutants through adsorption and persulfate-based AOPs. Sustainability, 14(16). https://doi.org/10.3390/su141610128

  6. Millati, R., Cahyono, R. B., Ariyanto, T., Azzahrani, I. N., Putri, R. U., & Taherzadeh, M. J. (2019). In M. J. Taherzadeh, K. Bolton, J. Wong, et al. (Eds.), Chapter 1 - agricultural, industrial, municipal, and Forest wastes: An overview (pp. 1–22). Elsevier.

    Google Scholar 

  7. Külcü, R., & Yaldiz, O. (2014). The composting of agricultural wastes and the new parameter for the assessment of the process. Ecological Engineering, 69, 220–225. https://doi.org/10.1016/j.ecoleng.2014.03.097

    Article  Google Scholar 

  8. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterisation, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570

    Article  CAS  Google Scholar 

  9. Park, W., Kim, H., Park, H., Choi, S., Hong, S. J., & Bahk, Y.-M. (2021). Biochar as a low-cost, eco-friendly, and electrically conductive material for terahertz applications. Scientific Reports, 11(1), 18498. https://doi.org/10.1038/s41598-021-98009-5

    Article  CAS  Google Scholar 

  10. Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). In D. L. B. T.-A & A. Sparks (Eds.), Chapter three - Biochar application to soil: Agronomic and environmental benefits and unintended consequences (Vol. 112, pp. 103–143). Academic Press.

    Google Scholar 

  11. Li, Y., et al. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. Journal of Soils and Sediments, 18(2), 546–563. https://doi.org/10.1007/s11368-017-1906-y

    Article  CAS  Google Scholar 

  12. Kumar, P. S., Gayathri, R., & Rathi, B. S. (2021). A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere, 285, 131438. https://doi.org/10.1016/j.chemosphere.2021.131438

    Article  CAS  Google Scholar 

  13. Agrafioti, E., Bouras, G., Kalderis, D., & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78. https://doi.org/10.1016/j.jaap.2013.02.010

    Article  CAS  Google Scholar 

  14. Nzihou, A., Stanmore, B., Lyczko, N., & Minh, D. P. (2019). The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy, 170, 326–337. https://doi.org/10.1016/j.energy.2018.12.174

    Article  CAS  Google Scholar 

  15. Li, J., et al. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228–244. https://doi.org/10.1016/j.biombioe.2016.09.010

    Article  CAS  Google Scholar 

  16. Chen, X., Lin, Q., He, R., Zhao, X., & Li, G. (2017). Hydrochar production from watermelon peel by hydrothermal carbonisation. Bioresource Technology, 241, 236–243. https://doi.org/10.1016/j.biortech.2017.04.012

    Article  CAS  Google Scholar 

  17. Amusat, S. O., Kebede, T. G., Dube, S., & Nindi, M. M. (2021). Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering, 41, 101993. https://doi.org/10.1016/j.jwpe.2021.101993

    Article  Google Scholar 

  18. Chen, W. H., et al. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887

    Article  Google Scholar 

  19. Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253–285. https://doi.org/10.1007/s42773-020-00047-1

    Article  Google Scholar 

  20. Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054

    Article  CAS  Google Scholar 

  21. Liu, Z., et al. (2022). Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Research, 1(1), 8. https://doi.org/10.1007/s44246-022-00007-3

    Article  Google Scholar 

  22. Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248. https://doi.org/10.1016/j.jaap.2004.07.003

    Article  CAS  Google Scholar 

  23. Das, C., Tamrakar, S., Kiziltas, A., & Xie, X. (2021). Incorporation of biochar to improve mechanical, thermal and electrical properties of polymer composites. Polymers (Basel), 13(16), 2663.

    Article  CAS  Google Scholar 

  24. Mašek, O., Brownsort, P., Cross, A., & Sohi, S. (2013). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103, 151–155. https://doi.org/10.1016/j.fuel.2011.08.044

    Article  CAS  Google Scholar 

  25. Krull, E. S., Baldock, J. A., Skjemstad, J. O., & Smernik, R. J. (2012). Characteristics of biochar: organo-chemical properties. In Biochar for environmental management (pp. 85–98). Routledge.

    Google Scholar 

  26. Sato, M. K., de Lima, H. V., Costa, A. N., Rodrigues, S., Pedroso, A. J. S., & de Freitas Maia, C. M. B. (2019). Biochar from acai agroindustry waste: Study of pyrolysis conditions. Waste Management, 96, 158–167. https://doi.org/10.1016/j.wasman.2019.07.022

    Article  CAS  Google Scholar 

  27. Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136–146. https://doi.org/10.1016/j.biombioe.2017.06.024

    Article  CAS  Google Scholar 

  28. Graber, E. R., Singh, B., Hanley, K., & Lehmann, J. (2017). Determination of cation exchange capacity in biochar. In Biochar: A guide to analytical methods (pp. 74–84).

    Google Scholar 

  29. Singh Karam, D., et al. (2022). An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. Journal of the Saudi Society of Agricultural Sciences, 21(3), 149–159. https://doi.org/10.1016/j.jssas.2021.07.005

    Article  Google Scholar 

  30. Sun, Y., et al. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578. https://doi.org/10.1016/j.cej.2013.10.081

    Article  CAS  Google Scholar 

  31. Batista, E. M. C. C., et al. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8(1), 10677. https://doi.org/10.1038/s41598-018-28794-z

    Article  CAS  Google Scholar 

  32. Kumar, A., Singh, E., Khapre, A., Bordoloi, N., & Kumar, S. (2020). Sorption of volatile organic compounds on non-activated biochar. Bioresource Technology, 297, 122469. https://doi.org/10.1016/j.biortech.2019.122469

    Article  CAS  Google Scholar 

  33. Luo, K., et al. (2019). Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid. Chemosphere, 231, 495–501. https://doi.org/10.1016/j.chemosphere.2019.05.151

    Article  CAS  Google Scholar 

  34. Huang, W., Zhang, M., Wang, Y., Chen, J., & Zhang, J. (2020). Biochars prepared from rabbit manure for the adsorption of rhodamine B and Congo red: Characterisation, kinetics, isotherms and thermodynamic studies. Water Science and Technology, 81(3), 436–444. https://doi.org/10.2166/wst.2020.100

    Article  CAS  Google Scholar 

  35. Li, R., et al. (2018). Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves. Water Science and Technology, 77(3–4), 1127–1136. https://doi.org/10.2166/wst.2017.636

    Article  CAS  Google Scholar 

  36. Ashiq, A., Adassooriya, N. M., Sarkar, B., Rajapaksha, A. U., Ok, Y. S., & Vithanage, M. (2019). Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. Journal of Environmental Management, 236, 428–435. https://doi.org/10.1016/j.jenvman.2019.02.006

    Article  CAS  Google Scholar 

  37. Wang, X., Guo, Z., Hu, Z., Ngo, H., Liang, S., & Zhang, J. (2020). Adsorption of phenanthrene from aqueous solutions by biochar derived from an ammoniation-hydrothermal method. Science of the Total Environment, 733, 139267. https://doi.org/10.1016/j.scitotenv.2020.139267

    Article  CAS  Google Scholar 

  38. Jin, Q., et al. (2020). Grape pomace and its secondary waste management: Biochar production for a broad range of lead (Pb) removal from water. Environmental Research, 186, 109442. https://doi.org/10.1016/j.envres.2020.109442

    Article  CAS  Google Scholar 

  39. Gong, H., Chi, J., Ding, Z., Zhang, F., & Huang, J. (2020). Removal of lead from two polluted soils by magnetic wheat straw biochars. Ecotoxicology and Environmental Safety, 205, 111132. https://doi.org/10.1016/j.ecoenv.2020.111132

    Article  CAS  Google Scholar 

  40. Karunanayake, A. G., et al. (2018). Lead and cadmium remediation using magnetised and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal, 331, 480–491. https://doi.org/10.1016/j.cej.2017.08.124

    Article  CAS  Google Scholar 

  41. Mohan, D., et al. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1), 57–73. https://doi.org/10.1016/j.jcis.2007.01.020

    Article  CAS  Google Scholar 

  42. Wang, Q., Lai, Z., Mu, J., Chu, D., & Zang, X. (2020). Converting industrial waste cork to biochar as cu (II) adsorbent via slow pyrolysis. Waste Management, 105, 102–109. https://doi.org/10.1016/j.wasman.2020.01.041

    Article  CAS  Google Scholar 

  43. Deng, J., et al. (2020). Different adsorption behaviors and mechanisms of a novel amino-functionalised hydrothermal biochar for hexavalent chromium and pentavalent antimony. Bioresource Technology, 310, 123438. https://doi.org/10.1016/j.biortech.2020.123438

    Article  CAS  Google Scholar 

  44. Paunovic, O., Pap, S., Maletic, S., Taggart, M. A., Boskovic, N., & Turk Sekulic, M. (2019). Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. Journal of Colloid and Interface Science, 547, 350–360. https://doi.org/10.1016/j.jcis.2019.04.011

    Article  CAS  Google Scholar 

  45. Antunes, E., Jacob, M. V., Brodie, G., & Schneider, P. A. (2017). Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis. Journal of Environmental Management, 203, 264–272. https://doi.org/10.1016/j.jenvman.2017.07.071

    Article  CAS  Google Scholar 

  46. Baccar, R., Sarrà, M., Bouzid, J., Feki, M., & Blánquez, P. (2012). Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 211–212, 310–317. https://doi.org/10.1016/j.cej.2012.09.099

    Article  CAS  Google Scholar 

  47. Monisha, R. S., Mani, R. L., Sivaprakash, B., Rajamohan, N., & Vo, D. V. N. (2022). Green remediation of pharmaceutical wastes using biochar: A review. Environmental Chemistry Letters, 20(1), 681–704. https://doi.org/10.1007/s10311-021-01348-y

    Article  CAS  Google Scholar 

  48. Ouyang, J., Zhou, L., Liu, Z., Heng, J. Y. Y., & Chen, W. (2020). Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Separation and Purification Technology, 253(June), 117536. https://doi.org/10.1016/j.seppur.2020.117536

    Article  CAS  Google Scholar 

  49. Filipinas, J. Q., Rivera, K. K. P., Ong, D. C., Pingul-Ong, S. M. B., Abarca, R. R. M., & de Luna, M. D. G. (2021). Removal of sodium diclofenac from aqueous solutions by rice hull biochar. Biochar, 3(2), 189–200. https://doi.org/10.1007/s42773-020-00079-7

    Article  CAS  Google Scholar 

  50. Zhang, H., et al. (2020). Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac. Journal of Molecular Liquids, 299, 112193. https://doi.org/10.1016/j.molliq.2019.112193

    Article  CAS  Google Scholar 

  51. Lonappan, L., Rouissi, T., Kaur Brar, S., Verma, M., & Surampalli, R. Y. (2018). An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics. Bioresource Technology, 249, 386–394. https://doi.org/10.1016/j.biortech.2017.10.039

    Article  CAS  Google Scholar 

  52. Essandoh, M., Kunwar, B., Pittman, C. U., Mohan, D., & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal, 265, 219–227. https://doi.org/10.1016/j.cej.2014.12.006

    Article  CAS  Google Scholar 

  53. Naima, A., et al. (2022). Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal. Bioresource Technology, 347, 126685. https://doi.org/10.1016/j.biortech.2022.126685

    Article  CAS  Google Scholar 

  54. Chakraborty, P., Show, S., Banerjee, S., & Halder, G. (2018). Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation. Journal of Environmental Chemical Engineering, 6(4), 5287–5300. https://doi.org/10.1016/j.jece.2018.08.017

    Article  CAS  Google Scholar 

  55. Jung, C., Oh, J., & Yoon, Y. (2015). Removal of acetaminophen and naproxen by combined coagulation and adsorption using biochar: Influence of combined sewer overflow components. Environmental Science and Pollution Research, 22(13), 10058–10069. https://doi.org/10.1007/s11356-015-4191-6

    Article  CAS  Google Scholar 

  56. Akhtar, L., Ahmad, M., Iqbal, S., Abdelhafez, A. A., & Mehran, M. T. (2021). Biochars’ adsorption performance towards moxifloxacin and ofloxacin in aqueous solution: Role of pyrolysis temperature and biomass type. Environmental Technology and Innovation, 24, 101912. https://doi.org/10.1016/j.eti.2021.101912

    Article  CAS  Google Scholar 

  57. Feng, Y., et al. (2018). Norfloxacin removal from aqueous solution using biochar derived from luffa sponge. Journal of Water Supply: Research and Technology—AQUA, 67(8), 703–714. https://doi.org/10.2166/aqua.2018.040

    Article  Google Scholar 

  58. Yao, Y., Zhang, Y., Gao, B., Chen, R., & Wu, F. (2018). Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environmental Science and Pollution Research, 25(26), 25659–25667. https://doi.org/10.1007/s11356-017-8849-0

    Article  CAS  Google Scholar 

  59. Fernandez-Sanroman, A., Acevedo-García, V., Pazos, M., Sanromán, M. A., & Rosales, E. (2020). Removal of sulfamethoxazole and methylparaben using hydrocolloid and fiber industry wastes: Comparison with biochar and laccase-biocomposite. Journal of Cleaner Production, 271, 122436. https://doi.org/10.1016/j.jclepro.2020.122436

    Article  CAS  Google Scholar 

  60. He, X., Kai, T., & Ding, P. (2021). Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review (Vol. 19, p. 4563). Springer International Publishing.

    Google Scholar 

  61. Kim, J. E., et al. (2020). Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresource Technology, 306, 123092. https://doi.org/10.1016/j.biortech.2020.123092

    Article  CAS  Google Scholar 

  62. Wang, Z., Yang, X., Qin, T., Liang, G., Li, Y., & Xie, X. (2019). Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay–biochar composite using natural attapulgite and cauliflower leaves. Environmental Science and Pollution Research, 26(8), 7463–7475. https://doi.org/10.1007/s11356-019-04172-8

    Article  CAS  Google Scholar 

  63. Prasannamedha, G., Kumar, P. S., Mehala, R., Sharumitha, T. J., & Surendhar, D. (2021). Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonisation of sugarcane bagasse. Journal of Hazardous Materials, 407, 124825. https://doi.org/10.1016/j.jhazmat.2020.124825

    Article  CAS  Google Scholar 

  64. Zhang, H., et al. (2022). Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride. Bioresource Technology, 350, 126884. https://doi.org/10.1016/j.biortech.2022.126884

    Article  CAS  Google Scholar 

  65. Alsawy, T., Rashad, E., El-Qelish, M., & Mohammed, R. H. (2022). A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. npj Clean Water, 5(1), 1. https://doi.org/10.1038/s41545-022-00172-3

    Article  CAS  Google Scholar 

  66. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M. A. H., & Sornalingam, K. (2017). Single and competitive sorption properties and mechanism of functionalised biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal, 311, 348–358. https://doi.org/10.1016/j.cej.2016.11.106

    Article  CAS  Google Scholar 

  67. Wang, K., Wang, Y., Zhang, S., di Chen, Y., Wang, R., & Ho, S. H. (2022). Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. Environmental Science and Ecotechnology, 10, 100168. https://doi.org/10.1016/j.ese.2022.100168

    Article  CAS  Google Scholar 

  68. Yi, S., et al. (2016). Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars. Chemosphere, 150, 694–701. https://doi.org/10.1016/j.chemosphere.2015.12.112

    Article  CAS  Google Scholar 

  69. Alagha, O., Manzar, M. S., Zubair, M., Anil, I., Mu’azu, N. D., & Qureshi, A. (2020). Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: Coexisting anions effect and mechanistic studies. Nanomaterials, 10(2). https://doi.org/10.3390/nano10020336

  70. de Ridder, D. J., Verberk, J. Q. J. C., Heijman, S. G. J., Amy, G. L., & van Dijk, J. C. (2012). Zeolites for nitrosamine and pharmaceutical removal from demineralised and surface water: Mechanisms and efficacy. Separation and Purification Technology, 89, 71–77. https://doi.org/10.1016/j.seppur.2012.01.025

    Article  CAS  Google Scholar 

  71. Xing, H., et al. (2021). Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review. Journal of Materials Science and Technology, 62, 180–194. https://doi.org/10.1016/j.jmst.2020.04.063

    Article  CAS  Google Scholar 

  72. Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072

    Article  CAS  Google Scholar 

  73. Zhang, W., Zheng, J., Zheng, P., & Qiu, R. (2015). Atrazine immobilisation on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. Chemosphere, 134, 438–445. https://doi.org/10.1016/j.chemosphere.2015.05.011

    Article  CAS  Google Scholar 

  74. Lian, F., Sun, B., Song, Z., Zhu, L., Qi, X., & Xing, B. (2014). Physicochemical properties of herb-residue biochar and its sorption to ionisable antibiotic sulfamethoxazole. Chemical Engineering Journal, 248, 128–134. https://doi.org/10.1016/j.cej.2014.03.021

    Article  CAS  Google Scholar 

  75. Georgin, J., et al. (2022). Adsorption of the first-line covid treatment analgesic onto activated carbon from residual pods of Erythrina Speciosa. Environmental Management, 71, 795. https://doi.org/10.1007/s00267-022-01716-6

    Article  Google Scholar 

  76. Wu, L., Yang, N., Li, B., & Bi, E. (2018). Roles of hydrophobic and hydrophilic fractions of dissolved organic matter in sorption of ketoprofen to biochars. Environmental Science and Pollution Research, 25(31), 31486–31496. https://doi.org/10.1007/s11356-018-3071-2

    Article  CAS  Google Scholar 

  77. Zhu, D., Hyun, S., Pignatello, J. J., & Lee, L. S. (2004). Evidence for π−π electron donor−acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environmental Science & Technology, 38(16), 4361–4368. https://doi.org/10.1021/es035379e

    Article  CAS  Google Scholar 

  78. Xiang, Y., et al. (2020). Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Science of the Total Environment, 709, 136079.

    Article  CAS  Google Scholar 

  79. Sun, L., Chen, D., Wan, S., & Yu, Z. (2018). Adsorption studies of Dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: Kinetic, equilibrium, and mechanisms. Journal of Polymers and the Environment, 26(2), 765–777. https://doi.org/10.1007/s10924-017-0986-5

    Article  CAS  Google Scholar 

  80. Zeng, Z., et al. (2018). Comparative study of rice husk biochars for aqueous antibiotics removal. Journal of Chemical Technology & Biotechnology, 93(4), 1075–1084. https://doi.org/10.1002/jctb.5464

    Article  CAS  Google Scholar 

  81. Wang, H., Lou, X., Hu, Q., & Sun, T. (2021). Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. Journal of Molecular Liquids, 325, 114967. https://doi.org/10.1016/j.molliq.2020.114967

    Article  CAS  Google Scholar 

  82. Shikuku, V. O., & Jemutai-Kimosop, S. (2020). Efficient removal of sulfamethoxazole onto sugarcane bagasse-derived biochar: Two and three-parameter isotherms, kinetics and thermodynamics. South African Journal of Chemistry, 73, 111–119.

    CAS  Google Scholar 

  83. Zhang, Y., Cheng, L., & Ji, Y. (2022). A novel amorphous porous biochar for adsorption of antibiotics: Adsorption mechanism analysis via experiment coupled with theoretical calculations. Chemical Engineering Research and Design, 186, 362–373. https://doi.org/10.1016/j.cherd.2022.07.049

    Article  CAS  Google Scholar 

  84. De Bhowmick, G., Briones, R. M., Thiele-Bruhn, S., Sen, R., & Sarmah, A. K. (2022). Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment. Environmental Pollution, 292, 118256. https://doi.org/10.1016/j.envpol.2021.118256

    Article  CAS  Google Scholar 

  85. Cimirro, N. F. G. M., et al. (2022). Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. Journal of Molecular Liquids, 364, 119979. https://doi.org/10.1016/j.molliq.2022.119979

    Article  CAS  Google Scholar 

  86. Choudhary, V., & Philip, L. (2022). Sustainability assessment of acid-modified biochar as adsorbent for the removal of pharmaceuticals and personal care products from secondary treated wastewater. Journal of Environmental Chemical Engineering, 10(3), 107592. https://doi.org/10.1016/j.jece.2022.107592

    Article  CAS  Google Scholar 

  87. Fan, Z., Fang, J., Zhang, G., Qin, L., Fang, Z., & Jin, L. (2022). Improved adsorption of tetracycline in water by a modified caulis spatholobi residue biochar. ACS Omega, 7(34), 30543–30553. https://doi.org/10.1021/acsomega.2c04033

    Article  CAS  Google Scholar 

  88. Shi, J., et al. (2022). High-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) for pollutants removal. Bioresource Technology, 344, 126268. https://doi.org/10.1016/j.biortech.2021.126268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukarram Zubair .

Editor information

Editors and Affiliations

Glossary

Adsorbent

The substance that adsorbs another.

Adsorption isotherm

The relationship between the equilibrium adsorbate concentrations in the liquid phase and the equilibrium adsorption amount in the solid phase at a certain temperature.

Adsorption kinetics

The measure of the adsorption uptake with respect to time at constant pressure or concentration and is employed to measure the diffusion of adsorbate in the pores.

Aliphatic compounds

Chemical compounds belonging to the organic class in which the atoms are connected by single, double, or triple bonds to form nonaromatic structures.

Aromatic compounds

Hydrocarbons containing sigma bonds and delocalized pi electrons between carbon atoms in a ring.

Carbonization

The conversion of organic matters such as plants and dead animal remains into carbon through destructive distillation.

Eco-friendly

Not harmful to the environment.

Electrical conductivity

The degree to which a specified material conducts electricity, calculated as the ratio of the current density in the material to the electric field that causes the flow of current.

Functional group

A group of atoms responsible for the characteristic reactions of a particular compound.

Hydrologic cycle

A cycle that involves the continuous circulation of water in the Earth-atmosphere system.

Pharmaceuticals

Compounds manufactured for use as a medicinal drug.

Pore volume

The total volume of very small openings in a bed of adsorbent particles.

Pyrolysis

Thermal decomposition of materials at elevated temperatures in an inert atmosphere. It involves a change in the chemical composition.

Specific surface area

Property of solids defined as the total surface area of a material per unit of mass.

Thermochemical

Interrelation of heat with a chemical reaction or physical change of state.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zubair, M. et al. (2024). Biochar for Adsorptive Removal of Pharmaceuticals from Environmental Water. In: Wang, L.K., Sung Wang, MH., Hung, YT. (eds) Waste Treatment in the Biotechnology, Agricultural and Food Industries. Handbook of Environmental Engineering, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-44768-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44768-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44767-9

  • Online ISBN: 978-3-031-44768-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics