Skip to main content
Log in

Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse

  • Environmental functions of biochar
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study explored the sorption of sulfamethoxazole (SMX) and sulfapyridine (SPY) onto biochars produced from raw and anaerobically digested bagasse. Initial evaluation of six bagasse biochars showed that digested bagasse biochar prepared at 600 °C (DBG600) was the best adsorbent to remove SMX and SPY. Further laboratory batch sorption experiments showed that DBG600 adsorbed SMX and SPY from aqueous solution with maximum adsorption capacity of 54.38 and 8.60 mg g−1, respectively. Solution pH showed strong effect on the sorption ability of DBG600 to the two antibiotics, and the sorption decreased with increasing of solution pH. Experimental and model results suggested that adsorption of SMX and SPY onto DBG600 might be controlled by the π–π interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng-asce 128:253–260

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Beltran FJ, Aguinaco A, Garcia-Araya JF, Oropesa AL (2008) Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res 42:3799–3808

    Article  CAS  Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294A

    Article  CAS  Google Scholar 

  • Braschi I, Blasioli S, Gigli L, Gessa CE, Alberti A, Martucci A (2010) Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications. J Hazard Mater 178:218–225

    Article  CAS  Google Scholar 

  • Caliskan E, Gokturk S (2010) Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Sep Sci Technol 45:244–255

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011a) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102:716–723

    Article  CAS  Google Scholar 

  • Chen H, Gao B, Li H, Ma LQ (2011b) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. J Contam Hydrol 126:29–36

    Article  CAS  Google Scholar 

  • Chen H, Gao B, Li H (2014) Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. Journal of Environmental Chemical Engineering 2:310–315

    Article  CAS  Google Scholar 

  • Chen H, Gao B, Li H (2015) Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J Hazard Mater 282:201–207

    Article  CAS  Google Scholar 

  • Choi K-J, Son H-J, Kim S-H (2007) Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic. Sci Total Environ 387:247–256

    Article  CAS  Google Scholar 

  • Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  Google Scholar 

  • Gao JA, Pedersen JA (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ Sci Technol 39:9509–9516

    Article  CAS  Google Scholar 

  • Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Env Sci Tec 37:41–127

    Article  CAS  Google Scholar 

  • Gobel A, Thomsen A, Mcardell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981–3989

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101:8868–8872

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X (2011) Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separ Sci Technol 46:1950–1956

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Zimmerman A, Zhou Y, Cao X (2015) Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environ Sci Pollut R 22:1868–1876

    Article  CAS  Google Scholar 

  • Ji L, Chen W, Zheng S, Xu Z, Zhu D (2009) Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir 25:11608–11613

    Article  CAS  Google Scholar 

  • Kahle M, Stamm C (2007) Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology 41:132–138

    Article  CAS  Google Scholar 

  • Karakoyun N, Kubilay S, Aktas N, Turhan O, Kasimoglu M, Yilmaz S, Sahiner N (2011) Hydrogel–biochar composites for effective organic contaminant removal from aqueous media. Desalination 280:319–325

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC III, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44:7970–7974

    Article  CAS  Google Scholar 

  • Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473

    Article  CAS  Google Scholar 

  • Mothe CG, de Miranda IC (2009) Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim 97:661–665

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24:1361–1367

    Article  CAS  Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Teixido M, Pignatello JJ, Beltran JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environmental Science & Technology 45:10020–10027

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331–1342

    Article  CAS  Google Scholar 

  • Tian Y, Gao B, Morales VL, Chen H, Wang Y, Li H (2013a) Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere 90:2597–2605

    Article  CAS  Google Scholar 

  • Tian Z, Mohan GR, Ingram L, Pullammanappallil P (2013b) Anaerobic digestion for treatment of stillage from cellulosic bioethanol production. Bioresour Technol 144:387–395

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  • Xie M, Chen W, Xu Z, Zheng S, Zhu D (2014) Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ Pollut 186:187–194

    Article  CAS  Google Scholar 

  • Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS (2012) Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem Eng J 200:673–680

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011a) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011b) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190:501–507

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Chen J, Zhang M, Inyang M, Li Y, Alva A, Yang L (2013) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresour Technol 138:8–13

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Wu F, Zhang C, Yang L (2015) Engineered biochar from biofuel residue: characterization and its silver removal potential. ACS Appl Mater Interfaces 7:10634–10640

    Article  CAS  Google Scholar 

  • Zheng H, Wang Z, Zhao J, Herbert S, Xing B (2013) Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ Pollut 181:60–67

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the NSF through grant CBET-1054405, the National Natural Science Foundation of China (NSFC) through grant 51402018, and the National Key Program for Basic Research of China through grant 2015CB251100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gao.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, Y., Gao, B. et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ Sci Pollut Res 25, 25659–25667 (2018). https://doi.org/10.1007/s11356-017-8849-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8849-0

Keywords

Navigation