Skip to main content

Advertisement

Log in

Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Forests play a critical role in terrestrial ecosystem carbon cycling and the mitigation of global climate change. Intensive forest management and global climate change have had negative impacts on the quality of forest soils via soil acidification, reduction of soil organic carbon content, deterioration of soil biological properties, and reduction of soil biodiversity. The role of biochar in improving soil properties and the mitigation of greenhouse gas (GHG) emissions has been extensively documented in agricultural soils, while the effect of biochar application on forest soils remains poorly understood. Here, we review and summarize the available literature on the effects of biochar on soil properties and GHG emissions in forest soils.

Materials and methods

This review focuses on (1) the effect of biochar application on soil physical, chemical, and microbial properties in forest ecosystems; (2) the effect of biochar application on soil GHG emissions in forest ecosystems; and (3) knowledge gaps concerning the effect of biochar application on biogeochemical and ecological processes in forest soils.

Results and discussion

Biochar application to forests generally increases soil porosity, soil moisture retention, and aggregate stability while reducing soil bulk density. In addition, it typically enhances soil chemical properties including pH, organic carbon stock, cation exchange capacity, and the concentration of available phosphorous and potassium. Further, biochar application alters microbial community structure in forest soils, while the increase of soil microbial biomass is only a short-term effect of biochar application. Biochar effects on GHG emissions have been shown to be variable as reflected in significantly decreasing soil N2O emissions, increasing soil CH4 uptake, and complex (negative, positive, or negligible) changes of soil CO2 emissions. Moreover, all of the aforementioned effects are biochar-, soil-, and plant-specific.

Conclusions

The application of biochars to forest soils generally results in the improvement of soil physical, chemical, and microbial properties while also mitigating soil GHG emissions. Therefore, we propose that the application of biochar in forest soils has considerable advantages, and this is especially true for plantation soils with low fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191

    Article  Google Scholar 

  • Ahmad M, Lee SS, Lim JE, Lee SE, Cho JS, Moon DH, Hashimoto Y, Ok YS (2014) Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 95:433–441

    Article  CAS  Google Scholar 

  • Alameda D, Villar R, Iriondo JM (2012) Spatial pattern of soil compaction: trees’ footprint on soil physical properties. For Ecol Manag 283:128–137

    Article  Google Scholar 

  • Ameloot N, De Neve S, Jegajeevagan K, Yildiz G, Buchan D, Funkuin YN, Prins W, Bouckaert L, Sleutel S (2013) Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol Biochem 57:401–410

    Article  CAS  Google Scholar 

  • Angın D, Altintig E, Köse TE (2013) Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour Technol 148:542–549

    Article  CAS  Google Scholar 

  • Artiola JF, Rasmussen C, Freitas R (2012) Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci 177:561–570

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Bai SH, Xu Z, Blumfield TJ, Reverchon F (2015) Human footprints in urban forests: implication of nitrogen deposition for nitrogen and carbon storage. J Soils Sediments 15:1927–1936

    Article  CAS  Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 5:132–143

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta -analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208

    Article  Google Scholar 

  • Brassard P, Godbout S, Raghavan V (2016) Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J Environ Manag 181:484–497

    Article  CAS  Google Scholar 

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain 28:386–396

    Article  CAS  Google Scholar 

  • Bruun EW, Petersen CT, Hansen E, Holm JK, Hauggaard-nielsen H (2014) Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag 30:109–118

    Article  Google Scholar 

  • Brzostek ER, Dragoni D, Schmid HP, Rahman AF, Sims D, Wayson CA, Johnson DJ, Phillips RP (2014) Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob Chang Biol 20:2531–2539

    Article  Google Scholar 

  • Burrell LD, Zehetner F, Rampazzo N, Wimmer B, Soja G (2016) Long-term effects of biochar on soil physical properties. Geoderma 282:96–102

    Article  CAS  Google Scholar 

  • Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAS, Ahmedna M (2010) Influence of pecan biochar on physical properties of a norfolk loamy sand. Soil Sci 175:10–14

    Article  CAS  Google Scholar 

  • Busscher WJ, Novak JM, Ahmedna M (2011) Physical effects of organic matter amendment of a southeastern US coastal loamy sand. Soil Sci 176:661–667

    CAS  Google Scholar 

  • Bussotti F, Pollastrini M, Holland V, Brüggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113

    Article  Google Scholar 

  • Cameron KC, Buchan GD (2006) Porosity and pore size distribution. In: Lal R (ed) Encyclopedia of soil science. CRC Press, Boca Raton, pp 1350–1353

    Google Scholar 

  • Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CAD, Alves PRL, Paula AMD, Nakatani AS, Pereira JDM, Nogueira MA (2013) Soil health: looking for suitable indicators What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289

    Article  Google Scholar 

  • Castellini M, Giglio L, Niedda M, Palumbo AD, Ventrella D (2015) Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res 154:1–13

    Article  Google Scholar 

  • Chang L, Wang BF, Liu XH, Callaham MA, Ge F (2017) Recovery of collembola in pinus tabulaeformis plantations. Pedosphere 27:129–137

    Article  Google Scholar 

  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, Wang J, Yu X (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Chen J, Liu X, Li L, Zheng J, Qu J, Zheng J, Zhang X, Pan G (2015) Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Appl Soil Ecol 91:68–79

    Article  CAS  Google Scholar 

  • Chen JH, Li SH, Liang CF, Xu QF, Li YC, Qin H, Fuhrmann JJ (2017) Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ 574:24–33

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • Dai ZM, Zhang XJ, Tang C, Muhammad N, Wu JJ, Brookes PC, Xu JM (2017) Potential role of biochars in decreasing soil acidification—a critical review. Sci Total Environ 581–582:601–611

    Article  CAS  Google Scholar 

  • Dempster D, Gleeson D, Solaiman Z, Jones D, Murphy D (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324

    Article  CAS  Google Scholar 

  • Deng W, Van Zwieten L, Lin Z, Liu X, Sarmah AK, Wang H (2017) Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. J Soils Sediments 17:632–640

    Article  CAS  Google Scholar 

  • Ding Y, Liu YG, Liu SB, Li ZW, Tan XF, Huang XX, Zheng GM, Zhou L, Zheng BH (2016) Biochar to improve soil fertility: a review. Agron Sustain Dev 36:36

    Article  CAS  Google Scholar 

  • Domene X, Mattana S, Hanley K, Enders A, Lehmann J (2014) Mediumterm effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162

    Article  CAS  Google Scholar 

  • Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W (2013) Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J Soils Sediments 13:1450–1460

    Article  CAS  Google Scholar 

  • Dong D, Feng Q, McGrouther K, Yang M, Wang H, Wu W (2015) Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. J Soils Sediments 15:153–162

    Article  CAS  Google Scholar 

  • Durenkamp M, Luo Y, Brookes PC (2010) Impact of black carbon addition to soil on the determination of soil microbial biomass by fumigation extraction. Soil Biol Biochem 42:2026–2029

    Article  CAS  Google Scholar 

  • Dutta T, Kwon E, Bhattacharya SS, Jeon BH, Deep A, Uchimiya M, Kim KH (2017) Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: a review. GCB Bioenergy 9:990–1004

    Article  CAS  Google Scholar 

  • Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E (2012) Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev. Environ Sci Technol 42:2311–2364

    Article  CAS  Google Scholar 

  • Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  Google Scholar 

  • Fargeon H, Aubry-Kientz M, Brunaux O, Descroix L, Gaspard R, Guitet S, Rossi V, Hérault B (2016) Vulnerability of commercial tree species to water stress in logged forests of the guiana shield. Forests 7:1–21

    Article  Google Scholar 

  • Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA (2013) Microbial utilisation of biochar-derived carbon. Sci Total Environ 465:288–297

    Article  CAS  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor J, Maire V, Mary B, Revaillot S, Maron P (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96

    Article  CAS  Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans Asabe 51:2061–2069

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Glisczynski FV, Pude R, Amelung W, Sandhage-Hofmann A (2016) Biochar-compost substrates in short-rotation coppice: effects on soil and trees in a three-year field experiment. J Plant Nutr Soil Sci 179:574–583

    Article  CAS  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–1411

    Article  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Gundale MJ, Nilsson MC, Pluchon N, Wardle DA (2016) The effect of biochar management on soil and plant community properties in a boreal forest. GCB Bioenergy 8:777–789

    Article  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralization. Org Geochem 35:823–830

    Article  CAS  Google Scholar 

  • Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, Lüscher P, Widmer F, Frey B (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 8:226

    Article  CAS  Google Scholar 

  • Hawthorne I, Johnson MS, Jassal RS, Black TA, Grant NJ, Smukler SM (2017) Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J Environ Manag 192:203–214

    Article  CAS  Google Scholar 

  • He L, Gielen G, Bolan N, Zhang X, Qin H, Huang H, Wang H (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35:519–534

    Article  CAS  Google Scholar 

  • He L, Fan S, Müller K, Hu G, Huang H, Zhang X, Lin X, Che L, Wang H (2016a) Biochar reduces the bioavailability of di-(2-ethylhexyl) phthalate in soil. Chemosphere 142:24–27

    Article  CAS  Google Scholar 

  • He YH, Zhou XH, Jiang LL, Li M, Du ZG, Zhou GY, Shao JJ, Wang XH, Xu ZH, Bai SH, Wallace H, Xu CY (2016b) Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9:743–755

    Article  CAS  Google Scholar 

  • Hedwall PO, Gong P, Ingerslev M, Bergh J (2014) Fertilization in northern forests-biological, economic and environmental constraints and possibilities Scandinavian. J Forest Res-Jpn 29:301–311

    Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209:188–197

    Article  CAS  Google Scholar 

  • Heydari M, Prévosto B, Naji HR, Mehrabi AA, Pothier D (2017) Influence of soil properties and burial depth on Persian oak (Quercus brantii, Lindl) establishment in different microhabitats resulting from traditional forest practices. Eur J Forest Res 136:1–19

    Article  Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Acta 71:3432e3445

    Article  CAS  Google Scholar 

  • Hseu ZY, Jien SH, Chien WH, Liou RC (2014) Impacts of biochar on physical properties and erosion potential of a mudstone slopeland soil. Sci World J. https://doi.org/10.1155/2014/602197

  • Hua L, Jin SS, Tang ZG (2012) Effect of bio-charcoal on release of carbon dioxide in soil. Anhui Agric Sci 40:6501–6503 (in Chinese)

    CAS  Google Scholar 

  • Huang P, Ge C, Feng D, Yu H, Luo J, Li J, Strong PJ, Sarmah AK, Bolan NS, Wang H (2018) Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.10.177

  • Ibrahim HM, Al-Wabel MI, Usman ARA, Al-Omran A (2013) Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178:165–173

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge

    Google Scholar 

  • Inubushi K, Otake S, Furukawa Y, Shibasaki N, Ali M, Itang AM, Tsuruta H (2005) Factors influencing methane emission from peat soils: comparison of tropical and temperate wetlands. Nutr Cycl Agroecosyst 71:93–99

    Article  CAS  Google Scholar 

  • Ito K, Uchiyama Y, Kurokami N, Sugano K, Nakanishi Y (2011) Soil acidification and decline of trees in forests within the precincts of shrines in Kyoto (Japan). Water Air Soil Pollut 214:197–204

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen F, Van Der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Jeffery S, Verheijen FG, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258

    Article  CAS  Google Scholar 

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University, Ithaca, NY

  • Johnson MS, Webster C, Jassal RS, Hawthorne I, Black TA (2017) Biochar influences on soil CO2 and CH4 fluxes in response to wetting and drying cycles for a forest soil. Sci Rep 7:6780

    Article  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Jorge RF, Almeida CXD, Borges EN, Passos RR (2012) Pore size distribution and soil bulk density in oxisols submitted to different management systems and use. Biosci J 28:159–169

    Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH 4 uptake and water holding capacity-results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195

    Article  CAS  Google Scholar 

  • Khademalrasoul A, Naveed M, Heckrath G, Kumari KGID, Jonge LWD, Elsgaard L, Vogel HJ, Iversen BV (2014) Biochar effects on soil aggregate properties under no-till maize. Soil Sci 179:273–283

    Article  CAS  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Green SJ, Uthandi S, Foster JS (2011) Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  • Kleibl M, Klvač R, Lombardini C, Porhaly J, Spinelli R (2014) Soil compaction and recovery after mechanized final felling of Italian coastal pine plantations. Croat J For Eng 35:63–71

    Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Oburger E, Buecker J, Kitzler B, Wenzel WW, Wimmer B, Soja G (2014) Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Sci Total Environ 481:498–508

    Article  CAS  Google Scholar 

  • Kormanek M, Głąb T, Banach J, Szewczyk G (2015) Effects of soil bulk density on sessile oak Quercus petraea, Liebl seedlings. Eur J Forest Res 134:969–979

    Article  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I, Xu XL (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang BQ, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lapenis AG, Lawrence GB, Andreev AA, Bobrov AA, Torn MS, Harden JW (2004) Acidification of forest soil in russia: from 1893 to present. Global Biogeochem Cycles 18:609–615

    Article  CAS  Google Scholar 

  • Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC III, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44:7970–7974

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lei OY, Zhang RD (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13:1561–1572

    Article  CAS  Google Scholar 

  • Lewis SA, Wu JQ, Robichaud PR (2006) Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrol Process 20:1–16

    Article  Google Scholar 

  • Li YF, Zhang JJ, Chang SX, Jiang PK, Zhou GM, Fu SL, Yan ER, Wu JS, Lin L (2013) Long-term intensive management effects on soil organic carbon pools and chemical composition in Moso bamboo (Phyllostachys pubescens) forests in subtropical China. Forest Ecol Manag 303:121–130

    Article  Google Scholar 

  • Li YF, Zhang JJ, Chang SX, Jiang PK, Zhou GM, Shen ZM, Wu JS, Lin L, Wang ZS, Shen MC (2014) Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools. For Ecol Manag 312:161–169

    Article  Google Scholar 

  • Li YC, Li YF, Chang SX, Liang X, Qin H, Chen JH, Xu QF (2017a) Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests. Soil Biol Biochem 107:19–31

    Article  CAS  Google Scholar 

  • Li ZG, Gu CM, Zhang RH, Ibrahim M, Zhang GS, Wang L, Zhang RQ, Chen F, Liu Y (2017b) The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China. Agric Water Manag 185:145–150

    Article  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soil. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizãoc FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lin ZB, Liu Q, Liu G, Cowie AL, Bei QC, Liu BJ, Wang XJ, Ma J, Zhu JG, Xie ZB (2017) Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China. Pedosphere 27:248–261

    Article  Google Scholar 

  • Liu QS, Liu Y, Show KY, Tay JH (2009) Toxicity effect of phenol on aerobic granules. Environ Technol 30:69–74

    Article  CAS  Google Scholar 

  • Liu YX, Yang M, Wu YM, Wang HL, Chen YX, Wu WX (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939

    Article  CAS  Google Scholar 

  • Liu XY, Li LQ, Bian RJ, Chen D, Qu JJ, Wanjiru Kibue G, Pan GX, Zhang XH, Zheng JW, Zheng JF (2014) Effect of biochar amendment on soil-silicon availability and rice uptake. J Plant Nutr Soil Sci 177:91–96

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, Jin Y, Zou J (2016) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8:392–406

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2014) Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 177:651–670

    Article  CAS  Google Scholar 

  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H (2014a) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Lu SG, Sun FF, Zong YT (2014b) Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena 114:37–44

    Article  Google Scholar 

  • Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan G, Chen X, Zhang X, Liu D, Song Z, Liu X, Wang H (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manage 186(Part 2):285–292

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, Lin QM, Nobili M, Brookes PC (2011) Soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, Lin QM, Nobili M, Devonshire BJ, Brookes PC (2013) Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH. Soil Biol Biochem 57:513–523

    Article  CAS  Google Scholar 

  • Luo Y, Yu ZY, Zhang KL, Xu JM, Brookes PC (2016) The properties and functions of biochars in forest ecosystems. J Soils Sediments 16:2005–2020

    Article  CAS  Google Scholar 

  • Luo Y, Lin Q, Durenkamp M, Dungait AJ, Brookes PC (2017a) Soil priming effects following substrates addition to biochar-treated soils after 431 days of pre-incubation. Biol Fertil Soils 53:315–326

    Article  CAS  Google Scholar 

  • Luo Y, Zang HD, Yu ZY, Chen ZY, Gunina A, Kuzyakov Y, Xu JM, Zhang KL, Brookes PC (2017b) Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biol Biochem 106:28–35

    Article  CAS  Google Scholar 

  • Maestrini B, Herrmann AM, Nannipieri P, Schmidt MWI, Abiven S (2014) Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol Biochem 69:291–301

    Article  CAS  Google Scholar 

  • Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem 62:137–146

    Article  CAS  Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954

    Article  CAS  Google Scholar 

  • Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    Article  CAS  Google Scholar 

  • Mertens J, Germer J, de Araújo Filho JC, Sauerborn J (2017) Effect of biochar, clay substrate and manure application on water availability and tree-seedling performance in a sandy soil. Arch Agron Soil Sci 63:969–983

    Article  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    Article  CAS  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Schurman JS, Thomas SC, Simpson MJ (2016) Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition. Biogeochemistry 130:227–245

    Article  CAS  Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3:313–339

    Article  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255

    Article  CAS  Google Scholar 

  • Nawaz MF, Bourrié G, Trolard F (2013) Soil compaction impact and modelling a review. Agron Sustain Dev 33:291–309

    Article  Google Scholar 

  • Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Technol 44:3324–3331

    Article  CAS  Google Scholar 

  • Nguyen TT, Xu CY, Tahmasbian I, Che RX, Xu ZH, Zhou XH, Wallace HM, Bai SH (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96

    Article  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Noyce GL, Basiliko N, Fulthorpe R, Sackett TE, Thomas SC (2015) Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol Fertil Soils 51:649–659

    Article  CAS  Google Scholar 

  • O’Neill B, Grossman J, Tsai M, Gomes J, Lehmann J, Peterson J, Neves E, Thies J (2009) Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb Ecol 58:23–35

    Article  Google Scholar 

  • Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T (2016) In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res 155:35–44

    Article  Google Scholar 

  • Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695

    Article  CAS  Google Scholar 

  • Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13:991–1002

    Google Scholar 

  • Page-Dumroese DS, Coleman M, Thomas SC (2015) Opportunities and uses of biochar on forest sites in North America. In: Bruckman VJ, Varol EA, Uzun BB, Liu J (eds) Biochar: a regional supply chain approach in view of mitigating climate change. Cambridge University Press, Cambridge

  • Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Wingfield MJ (2015) Changes in planted forests and future global implications. Forest Ecol Manag 352:57–67

    Article  Google Scholar 

  • Peng YY, Thomas SC, Tian DL (2008) Forest management and soil respiration: implications for carbon sequestration. Environ Rev 16:93–111

    Article  CAS  Google Scholar 

  • Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China. Soil Tillage Res 112:159–166

    Article  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Prober SM, Stol J, Piper M, Gupta VVSR, Cunningham SA (2014) Enhancing soil biophysical condition for climate-resilient restoration in mesic woodlands. Ecol Eng 71:246–255

    Article  Google Scholar 

  • Qi F, Kuppusamy S, Naidu R, Bolan NS, Ok YS, Lamb D, Li Y, Yu L, Semple KT, Wang H (2017) Pyrogenic carbon and its role in contaminant immobilization in soils. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2017.1328918

  • Quilliam RS, Glanville HC, Wade SC, Jones DL (2013) Life in the ‘charosphere’—does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem 65:287–293

    Article  CAS  Google Scholar 

  • Rhoades CC, Minatre KL, Pierson DN, Fegel TS, Cotrufo MF, Kelly EF (2017) Examining the potential of forest residue-based amendments for post-wildfire rehabilitation in Colorado, USA. Scientifica. https://doi.org/10.1155/2017/4758316

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  Google Scholar 

  • Rousk J, Dempster DN, Jones DL (2013) Transient biochar effects on decomposer microbial growth rates: evidence from two agricultural case-studies. Eur J Soil Sci 64:770–776

    Article  CAS  Google Scholar 

  • Sackett TE, Basiliko N, Noyce GL, Winsborough C, Schurman J, Ikeda C, Thomas SC (2015) Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 7:1062–1074

    Article  CAS  Google Scholar 

  • Sankura H, Lemma B, Ram N (2014) Effect of changing natural forest and wetland to other land uses on soil properties and stocks of carbon and nitrogen in south Ethiopia. Carpath J Earth Env 9:259–265

    Google Scholar 

  • Santin C, Doerr SH, Preston CM, Gonzalez-Rodriguez G (2015) Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob Chang Biol 21:1621–1633

    Article  Google Scholar 

  • Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124

    Article  CAS  Google Scholar 

  • Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345:47–58

    Article  CAS  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  Google Scholar 

  • Slavich PG, Sinclair K, Morris SG, Kimber SWL, Downie A, Van Zwieten L (2013) Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366:213–227

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Soinne H, Hovi J, Tammeorg P, Turtola E (2014) Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219–220:162–167

    Article  CAS  Google Scholar 

  • Spokas KA (2013) Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5:165–176

    Article  CAS  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96

    Article  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Sun FF, Lu SG (2014) Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J Plant Nutr Soil Sci 177:26–33

    Article  CAS  Google Scholar 

  • Sun LY, Li L, Chen ZZ, Wang JY, Xiong ZQ (2014) Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Sci Plant Nutr 60:254–265

    Article  CAS  Google Scholar 

  • Thomas SC, Gale N (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For 46:931–946

    Article  Google Scholar 

  • Tian D, Qu ZY, Gou MM, Li B, Lv YJ (2015) Experimental study of influence of biochar on different texture soil hydraulic characteristic parameters and moisture holding properties. Pol J Environ Stud 24:1435–1442

    Article  Google Scholar 

  • Tonks AJ, Aplin P, Beriro DJ, Cooper H, Evers S, Vane CH, Sjögersten S (2017) Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 289:36–45

    Article  CAS  Google Scholar 

  • Topoliantz S, Ponge JF, Ballof S (2005) Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol Fertil Soils 41:15–21

    Article  CAS  Google Scholar 

  • Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98:22–28

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441

    Article  CAS  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Zahoor A, Nishihara E (2011) Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agric Environ 9:1137–1143

    CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010a) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010b) Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res 48:555–568

    Article  CAS  Google Scholar 

  • Wang H, Lin K, Hou Z, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10:283–289

    Article  CAS  Google Scholar 

  • Wang JY, Zhang M, Xiong ZQ, Liu PL, Pan GX (2011) Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol Fertil Soils 47:887–896

    Article  CAS  Google Scholar 

  • Wang C, Tu Q, Dong D, Strong PJ, Wang H, Sun B, Wu W (2014a) Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J Hazard Mater 280:409–416

    Article  CAS  Google Scholar 

  • Wang ZL, Li YF, Chang SX, Zhang JJ, Jiang PK, Zhou GM, Shen ZM (2014b) Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol Fertil Soils 50:1109–1119

    Article  CAS  Google Scholar 

  • Wang JY, Xiong ZQ, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523

    Article  CAS  Google Scholar 

  • Wang ZY, Chen L, Sun FL, Luo XX, Wang HF, Liu GC, Xu ZH, Jiang ZX, Pan B, Zheng H (2017) Effects of adding biochar on the properties and nitrogen bioavailability of an acidic soil. Eur J Soil Sci 68:559–572

    Article  CAS  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154

    Article  CAS  Google Scholar 

  • Wood TE, Cavaleri MA, Reed SC (2012) Tropical forest carbon balance in a warmer world: a critical review spanning microbial-to ecosystem-scale processes. Biol Rev 87:912–927

    Article  Google Scholar 

  • Woolf D, Lehmann J (2012) Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83–95

    Article  CAS  Google Scholar 

  • Wrobel-Tobiszewska A, Boersma M, Adams P, Singh B, Franks S, Sargison JE (2016) Biochar for eucalyptus forestry plantations. Acta Hortic 1108:55–62

    Article  Google Scholar 

  • Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276

    Article  CAS  Google Scholar 

  • Xiao YH (2016) Effects of different application rates of biochar on the soil greenhouse gas emission in Chinese chestnut stands. Master Thesis, Zhejiang A & F University, Hangzhou, Zhejiang (in Chinese).

  • Xiao Q, Zhu LX, Zhang HP, Li XY, Shen YF, Li SQ (2016a) Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci 67:495

    Article  Google Scholar 

  • Xiao YH, Li YF, Wang ZL, Jiang PK, Zhou GM, Liu J (2016b) Effects of bamboo leaves and their biochar additions on soil N2O flux in a chinese chestnut forest. J Plant Nutr Fert 22:697–706 (in Chinese)

    Google Scholar 

  • Xu M, Shang H (2016) Contribution of soil respiration to the global carbon equation. J Plant Physiol 203:16–28

    Article  CAS  Google Scholar 

  • Xu QF, Jiang PK, Xu ZH (2008) Soil microbial functional diversity under intensively managed bamboo plantations in southern China. J Soils Sediments 8:177

    Article  CAS  Google Scholar 

  • Xu CY, Hosseini-Bai S, Hao Y, Rachaputi RCN, Wang H, Xu Z, Wallace H (2015) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut Res 22:6112–6125

    Article  CAS  Google Scholar 

  • Xu Y, Seshadri B, Sarkar B, Wang H, Rumpel C, Sparks D, Farrell M, Hall T, Yang X, Bolan N (2018) Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Sci Total Environ 621:148–159

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z, Wang H (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984

    Article  CAS  Google Scholar 

  • Yang X, Lu K, McGrouther K, Che L, Hu G, Wang Q, Liu X, Shen L, Huang H, Ye Z, Wang H (2017) Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. J Soils Sediments 17:751–762

    Article  CAS  Google Scholar 

  • Yoo G, Kang H (2012) Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual 41:1193–1202

    Article  CAS  Google Scholar 

  • Yu LQ, Tang J, Zhang RD, Wu QH, Gong MM (2013) Effects of biochar application on soil methane emission at different soil moisture levels. Biol Fertil Soils 49:119–128

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil Use Manag 27:110–115

    Article  Google Scholar 

  • Yuan JH, Xu RK, Qian W, Wang RH (2011) Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J Soils Sediments 11:741–750

    Article  CAS  Google Scholar 

  • Yuan Y, Bolan N, Prévoteau A, Vithanage M, Biswas JK, Ok YS, Wang H (2017) Applications of biochar in redox-mediated reactions. Bioresour Technol 246:271–281

    Article  CAS  Google Scholar 

  • Zhang AF, Zhou X, Li M, Wu HM (2017) Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China. Chemosphere 186: 986–993

  • Zhang AF, Liu YM, Pan GX, Hussain Q, Li LQ, Zheng JW, Zhang XH (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan N, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

  • Zhang X, He L, Sarmah AK, Lin K, Liu Y, Li J, Wang H (2014) Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. J Soils Sediments 14:1790–1799

    Article  CAS  Google Scholar 

  • Zhang K, Chen L, Li Y, Brookes PC, Xu JM, Luo Y (2016a) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53:77–87

    Article  CAS  Google Scholar 

  • Zhang X, Sarmah AK, Bolan NS, He L, Lin X, Che L, Tang C, Wang H (2016b) Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar. Chemosphere 142:28–34

    Article  CAS  Google Scholar 

  • Zhao L, Cao XD, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256:1–9

    Google Scholar 

  • Zheng J, Chen J, Pan G, Liu X, Zhang X, Li L, Bian R, Cheng K, Jinwei Z (2016) Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci Total Environ 571:206–217

    Article  CAS  Google Scholar 

  • Zhou GM, Xu JM, Jiang PK (2006a) Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere 16:525–531

    Article  CAS  Google Scholar 

  • Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006b) Old-growth forests can accumulate carbon in soils. Science 314:1417–1417

    Article  CAS  Google Scholar 

  • Zhou GY, Zhou XH, Zhang T, Du ZG, He YH, Wang XH, Shao JJ, Cao Y, Xue SG, Wang HL, Xu CY (2017) Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecol Manag 405:339–349

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31470626, 41401318, 21577131), the Natural Science Foundation for Distinguished Young Scholar of Zhejiang Province (LR18C160001), the Natural Science Foundation of Zhejiang Province, China (LY14C160007, LZ15D010001), the Natural Science Foundation of Guangdong Province, China (2017A030311019), the Major Science and Technology Project in Zhejiang Province, China (2015C03019), and the Special Funding for the Introduced Innovative R&D Team of Dongguan, China (2014607101003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Wang.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hu, S., Chen, J. et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments 18, 546–563 (2018). https://doi.org/10.1007/s11368-017-1906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1906-y

Keywords

Navigation