Skip to main content

Plant Secondary Metabolites and Their Impact on Human Health

  • Chapter
  • First Online:
Nano-Biofortification for Human and Environmental Health

Abstract

Secondary metabolites (SM) are compounds which are not only very important for plant survival but also play an essential role in their mechanism of action and have a number of medicinal properties to improve human health. Its content varies with plant species and horticultural plants are excellent sources of SM. These compounds have antioxidant activity that alleviates many ailments and promotes good health. The SM comes from different families of metabolites that can be highly variable in response to stress. It includes alkaloids, flavonoids, essential oils, glycosides, tannins, and resins which are used successfully in important dietary supplements, flavors, and important industrial medicines. These SM have the potential to improve human health by mitigating the negative effects of certain chronic diseases and aging. Certain components found in horticultural crops are considered to reduce the cancer of risk, protect the genome, develop immune system, and eliminate toxins. Among the various plant metabolites, polyphenols act primarily as free scavengers, reduce oxidative stress, are anti-mutagenic, and play a role in cancer and heart disease prevention and the development of atherosclerosis. The composition of SM in plants is strongly influenced by various biotic and abiotic factors. Low SM production in plants can be improved through the use of various elicitors. This chapter discusses different types of SM, biosynthesis methods, and regenerative mechanisms using various biotic (hormones, proteins, fungi, bacteria, carbohydrates) and abiotic elicitors (drought, light, heavy metals, high and low temperatures, salt) that can bring about an increase in the yield of SM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal, B. B., Sundaram, C., Prasad, S., & Kannappan, R. (2010). Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochemical Pharmacology, 80, 1613–1631.

    Article  CAS  Google Scholar 

  • Akula, R., & Gokare, A. R. (2011). Influence of abiotic stress signals and secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  • Alami, I., Mari, S., & Clerivet, A. (1998). A glycoprotein from Ceratocystis fimbriata f. sp. platani triggers phytoalexin synthesis in Platanus×acerifolia cell-suspension cultures. Phytochemistry, 48, 771–776.

    Article  CAS  Google Scholar 

  • Ali, R. M., & Abbas, H. M. (2003). Response of salt stressed barley seedlings to phenylurea. Plant, Soil and Environment, 49, 158–162.

    Article  Google Scholar 

  • Arakawa, O., Hori, Y., & Ogata, R. (1985). Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiologia Plantarum, 64, 323–327.

    Article  CAS  Google Scholar 

  • Ashraf, M. (1997). Changes in soluble carbohydrates and soluble proteins in three arid-zone grass species under salt stress. Tropical Agriculture, 74, 234–237.

    Google Scholar 

  • Aziz, A., Martin-Tanguy, J., & Larher, F. (1998). Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 104, 195–202.

    Article  CAS  Google Scholar 

  • Bahadur, A., Singh, U. P., Sarma, B. K., Singh, D. P., Singh, K. P., & Singh, A. (2007). Foliar application of plant growth-promoting rhizobacteria increases antifungal compounds in pea (Pisum sativum) against Erysiphe pisi. Mycobiology, 35, 129–134.

    Article  CAS  Google Scholar 

  • Bais, H. P., Travis, S., Herbert, P. W., & Vivanco, J. M. (2002). Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiology and Biochemistry, 40, 983–995.

    Article  CAS  Google Scholar 

  • Banchio, E., Bogino, P., Zygadlo, J., & Giordano, W. (2008). Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochemical Systematics and Ecology, 36, 766–771.

    Article  CAS  Google Scholar 

  • Banchio, E., Xie, X., Zhang, H., & Pare, P. W. (2009). Soil bacteria elevate essential oil accumulation and emissions in sweet basil. Journal of Agricultural and Food Chemistry, 57, 653–657.

    Article  CAS  Google Scholar 

  • Bassolino, L., Zhang, Y., Schoonbeek, H., Kiferle, C., Perata, P., & Martin, C. (2013). Accumulation of anthocyanins in tomato skin extends shelf life. The New Phytologist, 200, 650–655.

    Article  CAS  Google Scholar 

  • Berdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1–26.

    Article  CAS  Google Scholar 

  • Body, V. U., & Bagyaraj, D. J. (2003). Biological control of root rots of Coleus forskohlii Briq using microbial inoculants. World Journal of Microbiology and Biotechnology, 19, 175–180.

    Article  Google Scholar 

  • Bor, M., Seckin, B., Ozgur, R., Yilmaz, O., Ozdemir, F., & Turkan, I. (2009). Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid levels of sesame (Sesamum indicum L.). Acta Physiologiae Plantarum, 31, 655–659.

    Article  CAS  Google Scholar 

  • Bottger, S., & Melzig, M. F. (2013). The influence of saponins on cell membrane cholesterol. Bioorganic and Medicinal Chemistry, 21, 7118–7124.

    Google Scholar 

  • Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: A historical perspective. Plant Science, 161(5), 839–851.

    Article  CAS  Google Scholar 

  • Brachet, J., & Cosson, L. (1986). Changes in the total alkaloid content of Datura innoxia Mill. subjected to salt stress. Journal of Experimental Botany, 37, 650–656.

    Article  CAS  Google Scholar 

  • Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Khodakovskaya, M. V., Glazunov, V. P., Radchenko, S. V., Zvereva, E. V., Fedoreyev, S. A., & Zhuravlev, Y. N. (2002). Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. Journal of Biotechnology, 97, 213–221.

    Article  CAS  Google Scholar 

  • Cappellari, L. D. R., Santoro, M. V., Nievas, F., Giordano, W., & Banchio, E. (2013). Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Applied Soil Ecology, 70, 16–22.

    Article  Google Scholar 

  • Chan, L. K., Koay, S. S., Boey, P. L., & Bhatt, A. (2010). Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biological Research, 43, 127–35.

    Google Scholar 

  • Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology & Physiology, 33, 612–616.

    Article  CAS  Google Scholar 

  • Cho, Y., Lightfoot, D. A., & Wood, A. J. (1999). Trigonelline concentrations in salt stressed leaves of cultivated Glycine max. Phytochemistry, 52, 1235–1238.

    Article  CAS  Google Scholar 

  • Clemensen, A. K., Provenza, F. D., Hendrickson, J. R., & Grusak, M. A. (2020). Ecological implications of plant secondary metabolites- Phytochemical diversity can enhance agricultural sustainability. Frontiers in Sustainable Food Systems, 4, 547826.

    Article  Google Scholar 

  • Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313–7352.

    Article  CAS  Google Scholar 

  • David, S. S. (1995). Plant secondary metabolism (p. 759). Kluwer Academic Publishers.

    Google Scholar 

  • Davies, P. J. (Ed.). (2004). Plant hormones: biosynthesis, signal transduction, action. Springer Science & Business Media.

    Google Scholar 

  • de Oliveira, T. S., Thomaz, D. V., da Silva Neri, H. F., Cerqueira, L. B., Garcia, L. F., Gil, H. P. V., et al. (2018). Neuroprotective effect of Caryocar brasiliense Camb. Leaves is associated with anticholinesterase and antioxidant properties. Oxidative Medicine and Cellular Longevity, 2018, 1–12.

    Article  Google Scholar 

  • Desbène, S., Hanquet, B., Shoyama, Y., Wagner, H., & Lacaille-Dubois, M. A. (1999). Biologically active triterpene saponins from callus tissue of polygala a marella. Journal of Natural Products, 62(6), 923–926.

    Article  Google Scholar 

  • Dewick, P. M. (2002). Medicinal natural products (p. 495). Wiley.

    Google Scholar 

  • Dewick, P. M. (2009). Medicinal natural products: A biosynthetic approach (3rd ed., p. 508). Wiley.

    Book  Google Scholar 

  • Dixon, R. A., Dey, P. M., Murphy, D. L., & Whitehead, I. M. (1981). Dose responses for Colletotrichum lindemuthianum elicitor-mediated enzyme induction in French bean cell suspension cultures. Planta, 151, 272.

    Article  CAS  Google Scholar 

  • El-Hendawy, S., Al-Suhaibani, N., Elsayed, S., et al. (2019). Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices. PLoS ONE, 14(3):e0212294.

    Google Scholar 

  • Farber, K., Schumann, B., Miersch, O., & Roos, W. (2003). Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry, 62, 491–500.

    Article  CAS  Google Scholar 

  • Fernie, A. R., & Pichersky, E. (2015). Focus issue on metabolism: Metabolites, metabolites everywhere. Plant Physiology, 169(3), 1421–1423.

    Google Scholar 

  • Fraenkel, G. S. (1959). The raison d’Etre of secondary plant substances: These odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science, 129(3361), 1466–1470.

    Article  CAS  Google Scholar 

  • Geller, C., Varbanov, M., & Duval, R. E. (2012). Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses, 4, 3044–3068.

    Article  CAS  Google Scholar 

  • Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y., Mazzoni, L., Capocasa, F., Sabbadini, S., Alvarez-Suarez, J. M., Afrin, S., Rosati, C., Pandolfini, T., Molesini, B., Sanchez-Sevilla, J. F., Amaya, I., Mezzetti, B., & Battino, M. (2018). Overexpression of the anthocyanidin synthase gene in strawberry enhances antioxidant capacity and cytotoxic effects on human hepatic cancer cells. Journal of Agricultural and Food Chemistry, 66, 581–592.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 5, 26–33.

    Article  CAS  Google Scholar 

  • Gorajana, A., Venkatesan, M., Vinjamuri, S., Kurada, B. V., Peela, S., Jangam, P., & Zeeck, A. (2007). Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiological Research, 162(4), 322–327.

    Article  CAS  Google Scholar 

  • Gorelick, J., Rosenberg, R., Smotrich, A., Hanus, L., & Bernstein, N. (2015). Hypoglycemic activity of withanolides and elicited Withania somnifera. Phytochemistry, 116, 283–289.

    Article  CAS  Google Scholar 

  • Grubb, C. D., & Abel, S. (2006). Glucosinolate metabolism and its control. Trends in Plant Science, 11(2), 89–100.

    Article  CAS  Google Scholar 

  • Hartmann, T. (2007). From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry, 68(22–24), 2831–2846.

    Google Scholar 

  • Hawrylak, B., Matraszek, R., & Szymanska, M. (2007). Response of lettuce (Lactuca sativa L.) to selenium in nutrient solution contaminated with nickel. Vegetable Crops Research Bulletin, 67, 63.

    Google Scholar 

  • Hemashenpagam, N., & Selvaraj, T. (2011). Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPRs) on medicinal plant Solanum viarum seedlings. Journal of Environmental Biology, 32, 579–583.

    CAS  Google Scholar 

  • Herbert, R. B. (1989). The biosynthesis of secondary metabolites (p. 200). Springer.

    Book  Google Scholar 

  • Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., & Lauvergeat, V. (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 62(2465), 2483.

    Google Scholar 

  • Hummel, I., EI-Amrani, A., Gouesbet, G., Hennion, F., & Couee, I. (2004). Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. Journal of Experimental Botany, 399, 1125–1134.

    Article  Google Scholar 

  • Hussein, R. A., & EL-Anssary, A. A. (2018). Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. IntechOpen. https://doi.org/10.5772/intechopen.76139

    Book  Google Scholar 

  • Ishimaru, K., Arakawa, H., & Neera, S. (1993). Polyphenol production in cell cultures of Cornus kousa. Phytochemistry, 32(5), 1193–1197.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change, 2007: The physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., et al. (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. 2007.

    Google Scholar 

  • Jamwal, K., Bhattacharya, S., & Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26–38.

    Article  Google Scholar 

  • Jideani, A. I. O., Silungwe, H., Takalani, T., Omolola, O. A., Udeh, O. H., & Anyasi, A. T. (2021). Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties, 24(1), 41–67.

    Article  CAS  Google Scholar 

  • Johnson, T. S., Ravishankar, G. A., & Venkataraman, L. V. (1990). In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Science, 70(2), 223–229.

    Article  CAS  Google Scholar 

  • Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. The Journal of Pharmacy and Pharmacology, 2(7), 377–392.

    Google Scholar 

  • Kainulainen, P., Holopainen, J. K., & Holopainen, T. (1998). The influence of elevated CO2 and O3 concentrations on scots pine needles: Changes in starch and secondary metabolites over three exposure years. Oecologia, 114, 45560.

    Article  Google Scholar 

  • Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research, 3, 1222–1239.

    CAS  Google Scholar 

  • Khoo, H. E., Prasad, K. N., Kong, K. W., Jiang, Y., & Ismail, A. (2011). Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules, 16, 1710–1738.

    Article  CAS  Google Scholar 

  • Kim, J. S., Lee, S. Y., & Park, S. U. (2008). Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different agrobacterium rhizogenes strains. African Journal of Biotechnology, 7(20), 3788–3790.

    CAS  Google Scholar 

  • Kin, N., & Kunter, B. (2009). The effect of callus age, VU radiation and incubation time on trans-resvertrol production in grapevine callus culture. Tarim Bilimleri Dergisi, 15, 9–13.

    Article  Google Scholar 

  • Komaraiah, P., Ramakrishna, S. V., Reddanna, P., & KaviKishor, P. B. (2003). Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. Journal of Biotechnology, 101, 181–187.

    Article  CAS  Google Scholar 

  • Krishnamurthy, R., & Bhagwat, K. A. M. (1989). Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology, 91, 500–504.

    Article  CAS  Google Scholar 

  • Krishnamurthy, R., & Bhagwat, K. A. M. (1990). Accumulation of choline and glycinebetaine in salt-stressed wheat seedlings. Current Science, 59, 111–112.

    CAS  Google Scholar 

  • Krupa, Z., Baranowska, M., & Orzol, D. (1996). Can anthocyanins be considered as heavy metal stress indicator in higher plants? Acta Physiologiae Plantarum, 18, 147–151.

    CAS  Google Scholar 

  • Krzyzanowska, J., Czubacka, A., Pecio, L., Przybys, M., Doroszewska, T., Stochmal, A., & Oleszek, W. (2012). The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha piperita cell suspension cultures. Plant Cell, Tissue and Organ Culture, 108, 73–81.

    Article  CAS  Google Scholar 

  • Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., & Abdelly, C. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45, 244–249.

    Article  CAS  Google Scholar 

  • Larson, R. A. (1988). The antioxidants of higher plants. Phytochemistry, 27, 969–978.

    Article  CAS  Google Scholar 

  • Lau, K. M., Lee, K. M., Koon, C. M., Cheung, C. S., Lau, C. P., Ho, H. M., et al. (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 118, 79–85.

    Article  Google Scholar 

  • Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., & Urdaci, M. C. (2000). Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Applied and Environmental Microbiology, 66(12), 5213–5220.

    Article  Google Scholar 

  • Lewis, T. A., Cortese, M. S., Sebat, J. L., Green, T. L., Lee, C. H., & Crawford, R. L. (2000). A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2, 6-bis (thiocarboxylic acid). Environmental Microbiology, 2(4), 407–416.

    Article  CAS  Google Scholar 

  • Li, Y., Kui, S. W., Xiao, R., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23, 762.

    Article  Google Scholar 

  • Liu, H., Wang, X., Wang, D., Zou, Z., & Liang, Z. (2011). Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Industrial Crops and Products, 33, 84–88.

    Article  CAS  Google Scholar 

  • Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4, 8.

    Article  Google Scholar 

  • Malpathak, N. P., & David, S. B. (1986). Flavor formation in tissue cultures of garlic (Allium sativum L.). Plant Cell Reports, 5(6), 446–447.

    Article  CAS  Google Scholar 

  • Mansfield, J. W. (2000). Antimicrobial compounds and resistances. The role of phytoalexins and phytoanticipins. In A. J. Slusarenko, R. S. S. Fraser, L. C. Vanloon, & R. S. Fraser (Eds.), Mechanism of resistance to plant diseases (pp. 325–363). Springer.

    Chapter  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (p. 889). Academic.

    Google Scholar 

  • Marangos, P. J., Boulenger, J. J., & Patel, J. (1984). Effects of chronic caffeine on brain adenosine receptors: Regional and ontogenetic studies. Life Sciences, 89, 899–907.

    Google Scholar 

  • Matthias, E., & Daniel, J. K. (2020). Plant secondary metabolites as defences, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiology, 184, 39–52.

    Article  Google Scholar 

  • Michal, G., & Schomburg, D. (2013). Biochemical pathways: An atlas of biochemistry and molecular biology (2nd ed., p. 416). Wiley.

    Google Scholar 

  • Mizukami, H., Konoshima, M., & Tabata, M. (1977). Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry, 16, 1183–1186.

    Article  CAS  Google Scholar 

  • Mooney, M., Desnos, T., Harrison, K., Jones, C. R., Coen, E., et al. (1995). Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. The Plant Journal, 7, 333–339.

    Article  CAS  Google Scholar 

  • Muller, S. S., Kurosaki, F., & Nishi, A. (1994). Role of salicylic acid and intercellular Ca2+ in the induction of chitinase activity in carrot suspension culture. Physiological and Molecular Plant Pathology, 45, 101–109.

    Article  Google Scholar 

  • Naik, P. M., & Al-Khayri, J. M. (2016). Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In A. K. Shankar & C. Shankar (Eds.), Abiotic and biotic stress in plants – Recent advances and future perspectives (pp. 247–277). INTECH Publisher.

    Google Scholar 

  • Namdeo, A. G., Patil, S., & Fulzele, D. P. (2002). Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnology Progress, 18, 159–162.

    Article  CAS  Google Scholar 

  • Narayan, M. S., Thimmaraju, R., & Bhagyalashmi, M. (2005). Interplay of growth regulators during solid-state and liquid state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochemistry, 40, 351–358.

    Article  CAS  Google Scholar 

  • Navarro, J. M., Flores, P., Garrido, C., & Martinez, V. (2006). Changesin the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chemistry, 96, 66–73.

    Article  CAS  Google Scholar 

  • Nazif, N. M., Rady, M. R., & El-Nasr, M. S. (2000). Stimulation of anthraquinone production in suspension cultures of Cassia acutifolia by salt stress. Fitoterapia, 71(1), 34–40.

    Article  CAS  Google Scholar 

  • Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology, 7(12), 1797–1806.

    Article  CAS  Google Scholar 

  • Neera, S., & Ishimaru, K. (1992). Tannin production in cell cultures of Sapium sebiferum. Phytochemistry, 31(3), 833–836.

    Article  CAS  Google Scholar 

  • Nicolaou, K. C., Chen, J. S., & Corey, E. J. (2011). Classics in total synthesis III: Further targets, strategies, methods (Vol. 746). Wiley-VCH.

    Google Scholar 

  • Nijveldt, R. J., Van Nood, E. L. S., Van Hoorn, D. E., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4), 418–425.

    Google Scholar 

  • Nikolaeva, T. N., Zagoskina, N. V., & Zaprometov, M. N. (2009). Production of phenolic compounds in callus cultures of tea plant under the effect of 2, 4-D and NAA. Russian Journal of Plant Physiology, 56(1), 45–49.

    Article  CAS  Google Scholar 

  • Nozue, M., Kubo, H., Nishimura, M., & Yasuda, H. (1995). Detection and characterization of a vacuolar protein (VP24) in anthocyanin producing cells of sweet potato in suspension culture. Plant & Cell Physiology, 36, 883–889.

    Article  CAS  Google Scholar 

  • Ohlsson, A. B., & Berglund, T. (1989). Effect of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. Journal of Plant Physiology, 135, 505–507.

    Article  CAS  Google Scholar 

  • Orihara, Y., & Furuya, T. (1990). Production of theanine and other γ-glutamyl derivatives by Camellia sinensis cultured cells. Plant Cell Reports, 9(2), 65–68.

    Article  CAS  Google Scholar 

  • Orlita, A., Sidwa–Gorycka, M., Paszkiewicz, M., Malinski, E., Kumirska, J., Siedlecka, E. M., Łojkowska, E., & Stepnowski, P. (2008). Application of chitin and chitosan as elicitors of coumarins and fluoroquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnology and Applied Biochemistry, 51, 91–96.

    Article  CAS  Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324–349.

    Article  CAS  Google Scholar 

  • Park, E. S., Moon, W. S., Song, M. J., Kim, M. N., Chung, K. H., & Yoon, J. S. (2001). Antimicrobial activity of phenol and benzoic acid derivatives. International Biodeterioration & Biodegradation, 47(4), 209–214.

    Article  CAS  Google Scholar 

  • Patil, J. G., Ahire, M. L., Nitnaware, K. M., Panda, S., Bhatt, V. P., Kishor, P. B., & Nikam, T. D. (2013). In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Applied Microbiology and Biotechnology, 97, 2379–2393.

    Article  CAS  Google Scholar 

  • Patrica, M., Moctezuma, L., & Gloria, L. E. (1996). Biosynthesis of sesquiterpenic Phytoalexin captidiol in elicited root cultures of chilli peppers (C. annum). Plant Cell Reports, 15, 360–366.

    Article  Google Scholar 

  • Payne, G. F., Bringi, V., Prince, C., & Shuler, M. L. (1991). The quest for commercial production of chemicals from plant cell culture. In Plant cell and tissue culture in liquid systems (pp. 1–10). Hanser.

    Google Scholar 

  • Pedapudi, S., Chin, C. K., & Pedersen, H. (2000). Production and elicitation of benzal acetone and the raspberry ketone in cell suspension cultures of Rubus idaeus. Biotechnology Progress, 16, 346–349.

    Article  CAS  Google Scholar 

  • Pedrazani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., et al. (2003). Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation, 412, 149–158.

    Google Scholar 

  • Petrusa, L. M., & Winicov, I. (1997). Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiology and Biochemistry, 35, 303–310.

    CAS  Google Scholar 

  • Pimm, S. L. (2009). Climate disruption and biodiversity. Current Biology, 19, 595–601.

    Article  Google Scholar 

  • Pratibha, G., Satyawati, S., & Sanjay, S. (2015). Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Applied Biochemistry and Biotechnology, 176(3), 863–874.

    Article  Google Scholar 

  • Qu, J. G., Yu, X. J., Zhang, W., & Jin, M. F. (2006). Significant improved anthocyanins biosynthesis in suspension cultures of Vitis vinifera by process intensification. Sheng Wu Gong Cheng Xae Bao, 22, 299–305.

    CAS  Google Scholar 

  • Radman, R., Saez, T., Bucke, C., & Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnology and Applied Biochemistry, 37, 91–102.

    Article  CAS  Google Scholar 

  • Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720–1731.

    Article  CAS  Google Scholar 

  • Ramakrishna, W., Kumari, A., Rahman, N., & Mandave, P. (2021). Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm. Rice Science, 28(1), 13–30.

    Article  Google Scholar 

  • Ramarathnam, R., Bo, S., Chen, Y., Fernando, W. D., Xuewen, G., & De Kievit, T. (2007). Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Canadian Journal of Microbiology, 53(7), 901–911.

    Article  CAS  Google Scholar 

  • Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216.

    Google Scholar 

  • Raskin, I., Ribnicky, D. M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D. A., & Yakoby, R. N. (2002). Plant and human health in the twenty-first century. Trends in Biotechnology, 20, 522–531.

    Article  CAS  Google Scholar 

  • Ravishankar, G. A., & Venkataraman, L. V. (1993). Role of plant cell cultures in food biotechnology: Commercial prospectus and problems (p. 255). Oxford IBH Press.

    Google Scholar 

  • Reddy, L., Odhav, B., & Bhoola, K. D. (2003). Natural product for cancer prevention: Global perspective. Pharmacology & Therapeutics, 99, 1–13.

    Article  CAS  Google Scholar 

  • Rokem, J. S., Schwarzberg, J., & Goldberg, I. (1984). Autoclaved fungal mycelia increase production in cell suspension cultures of Dioscorea deltoid. Plant Cell Reports, 3, 159–160.

    Article  CAS  Google Scholar 

  • Salma, U., Rahman, M. S. M., Islam, S., Haque, N., Jubair, T. A., Haque, A. K. M. F., & Mukti, I. J. (2008). The influence of different hormone concentration and combination on callus induction and regeneration of Rauvolfia serpentine (L.) Benth. Pakistan Journal of Biological Sciences, 11, 1638–1641.

    Article  CAS  Google Scholar 

  • Samuni-Blank, M., Izhaki, I., Dearing, M. D., Gerchman, Y., Trabelcy, B., Lotan, A., & Arad, Z. (2012). Intraspecific directed deterrence by the mustard oil bomb in a desert plant. Current Biology, 22(13), 1218–1220.

    Article  CAS  Google Scholar 

  • Sarker, S. D., & Nahar, L. (2007). Chemistry for pharmacy students general, organic and natural product chemistry (pp. 283–359). Wiley.

    Google Scholar 

  • Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. Journal of Biotechnology, 128, 281–289.

    Article  CAS  Google Scholar 

  • Sathiyabama, M., Bernstein, N., & Anusuya, S. (2016). Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Industrial Crops and Products, 89, 87–94.

    Article  CAS  Google Scholar 

  • Schumacher, R. W., Talmage, S. C., Miller, S. A., Sarris, K. E., Davidson, B. S., & Goldberg, A. (2003). Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium. Journal of Natural Products, 66(9), 1291–1293.

    Article  CAS  Google Scholar 

  • Selvaraj, T., Rajeshkumar, S., Nisha, M. C., Wondimu, L., & Tesso, M. (2008). Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Maejo International Journal of Science and Technology, 2, 516–525.

    CAS  Google Scholar 

  • Sena, M. K., & Dass, P. K. (1998). Influence of microbial inoculants on quality of turmeric. Indian Cocoa, Arecanut and Spices Journal, 21, 31–33.

    Google Scholar 

  • Siah, C. L., & Doran, P. M. (1991). Enhanced codeine and morphine production in suspended Papaver somniferum cultures after removal of exogenous hormones. Plant Cell Reports, 10(6), 349–353.

    CAS  Google Scholar 

  • Singh, S., & Sinha, S. (2005). Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicology and Environmental Safety, 62, 118–127.

    Article  CAS  Google Scholar 

  • Sivanandhan, G., Dev, G. K., Jeyaraj, M., Rajesh, M., Arjunan, A., Muthuselvam, M., Manickavasagam, M., Selvaraj, N., & Ganapathi, A. (2013). Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue and Organ Culture, 114, 121–129.

    Article  CAS  Google Scholar 

  • Stamp, N. (2003). Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78(1), 23–55.

    Article  Google Scholar 

  • Subramaniam, S., Selvaduray, K. R., & Radhakrishnan, A. K. (2019). Bioactive compounds: Natural defence against cancer? Biomolecules, 9, 758.

    Article  CAS  Google Scholar 

  • Sujanya, S., Poornasri, D. B., & Sai, I. (2008). In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. Journal of Biosciences, 33, 113–120.

    Article  CAS  Google Scholar 

  • Sumarah, M. W., Kesting, J. R., Sørensen, D., & Miller, J. D. (2011). Antifungal metabolites from fungal endophytes of Pinus strobus. Phytochemistry, 72(14–15), 1833–1837.

    Article  CAS  Google Scholar 

  • Szabo, B., Tyihak, E., Szabo, L. G., & Botz, L. (2003). Mycotoxin and drought stress induced change of alkaloid content of Papaver somniferum plantlets. Acta Botanica Hungarica, 45, 409–417.

    Article  CAS  Google Scholar 

  • Tamehiro, N., Okamoto-Hosoya, Y., Okamoto, S., Ubukata, M., Hamada, M., Naganawa, H., & Ochi, K. (2002). Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 46(2), 315–320.

    Article  CAS  Google Scholar 

  • Taniguchi, S., Imayoshi, Y., Kobayashi, E., Takamatsu, Y., Ito, H., Hatan, T., & Yoshida, T. (2002). Production of bioactive triterpenes by Eriobotrya japonica calli. Phytochemistry, 59(3), 315–323.

    Article  CAS  Google Scholar 

  • Tari, I., Kiss, G., Deer, A. K., Csiszar, J., Erdei, L., Galle, A., Gemes, K., Horvath, F., Poor, P., Szepesi, A., & Simon, L. M. (2010). Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biologia Plantarum, 54, 677–683.

    Article  CAS  Google Scholar 

  • Taurino, M., Ingrosso, I., D’amico, L., Domenico, S. D., Nicoletti, I., Corradini, D., Santino, A., & Giovinazzo, G. (2015). Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures. Springer Plus, 4, 49.

    Article  Google Scholar 

  • Taya, M., Mine, K., Kinoka, M., Tone, S., & Ichi, T. (1992). Production and release of pigments by cultures of transformed hairy roots of red beet. Journal of Fermentation and Bioengineering, 3, 31–36.

    Article  Google Scholar 

  • Teodoro, A. J. (2019). Bioactive compounds of food: Their role in the prevention and treatment of diseases. Oxidative Medicine and Cellular Longevity, 2019, 1–4.

    Article  Google Scholar 

  • Thirumurugan, D., Cholarajan, A., Raja, S. S., & Vijayakumar, R. (2018). An introductory chapter: Secondary metabolites. In Secondary metabolites – Sources and applications (pp. 1–21). InTech.

    Google Scholar 

  • Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology, 9, 297–304.

    Article  CAS  Google Scholar 

  • Tiwari, R., & Rana, C. S. (2015). Plant secondary metabolites: A review. International Journal of Engineering Research and General Science, 3(5), 661–670.

    Google Scholar 

  • Tiwari, R. K., Trivedi, M., Guang, Z. C., Guo, G. Q., & Zheng, G. C. (2007). Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: Growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Reports, 26(2), 199–210.

    Article  CAS  Google Scholar 

  • Traka, M., & Mitchen, R. (2008). Glucosinolates, isothiocyanates and human health. The Phytochemical Society of Europe, 8, 269–282.

    Google Scholar 

  • Trejo-Tapia, G., Jimenez-Aparicio, A., Rodriguez-Monroy, M., De Jesus-Sanchez, A., & Gutierrez-Lopez, G. (2001). Influence of cobalt and other microelements on the production of betalains and the growth of suspension cultures of Beta vulgaris. Plant Cell Tissue and Organ Culture, 67, 19–23.

    Google Scholar 

  • Tuteja, N., & Sopory, S. K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signaling & Behavior, 3, 525–536.

    Article  Google Scholar 

  • Twaij, B. M., & Hasan, M. N. (2022). Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13(1), 4–14.

    Article  CAS  Google Scholar 

  • Umamaheswai, A., & Lalitha, V. (2007). In vitro effect of various growth hormones in Capsicum annum L. on the callus induction and production of capsaicin. Journal of Plant Sciences, 2, 545–551.

    Article  Google Scholar 

  • Upadhyay, S. K., Rajput, V. D., Kumari, A., et al. (2022a). Plant growth-promoting rhizobacteria: A potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01433-3

  • Upadhyay, S. K., Srivastava, A. K., Rajput, V. D., Chauhan, P. K., Bhojiya, A. A., Jain, D., et al. (2022b). Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Frontiers in Microbiology, 13, 916488. https://doi.org/10.3389/fmicb.2022.916488

    Article  Google Scholar 

  • Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128–136.

    Article  CAS  Google Scholar 

  • Varshney, K. A., & Gangwar, L. P. (1988). Choline and betaine accumulation in Trifolium alexandrinum L. during salt stress. Egyptian Journal of Botany, 31, 81–86.

    CAS  Google Scholar 

  • Velu, G., Palanichamy, V., & Rajan, A. P. (2018). Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In S. M. Roopan & G. Madhumitha (Eds.), Bioorganic phase in natural food: An overview (pp. 135–156). Springer.

    Chapter  Google Scholar 

  • Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J., & Nash, R. J. (2001). Polyhydroxy lated alkaloid – Natural occurrence and therapeutic applications. Phytochemistry, 56, 265–295.

    Article  CAS  Google Scholar 

  • Wink, M. (2015). Modes of action of herbal medicines and plant secondary metabolites. Medicines, 2(3), 251–286.

    Google Scholar 

  • Wu, S. J., Fotso, S., Li, F., Qin, S., & Laatsch, H. (2007). Amorphane sesquiterpenes from a Marine Streptomyces sp. Journal of Natural Products, 70(2), 304–306.

    Article  CAS  Google Scholar 

  • Xiaolong, H., Min, S., Lijie, C., Chao, X., Yanjie, Z., & Guoyin, K. (2015). Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnology and Applied Biochemistry, 62(1), 24–31.

    Article  Google Scholar 

  • Xu, A., Zhan, J. C., & Huang, W. D. (2015). Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue and Organ Culture, 122, 197–211.

    Article  CAS  Google Scholar 

  • Zenk, M. H. (1991). Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of gold. Phytochemistry, 30(12), 3861–3863.

    Article  CAS  Google Scholar 

  • Zhao, J., Zhu, W., & Hu, Q. (2001). Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture. Enzyme and Microbial Technology, 28, 666–672.

    Article  CAS  Google Scholar 

  • Zhao, J., Zhou, L., & Wub, J. (2010). Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochemistry, 45, 1517–1522.

    Article  CAS  Google Scholar 

  • Zuluaga, D. L., Gonzali, S., Loreti, E., Pucciariello, C., Degllnnocenti, E., Guidi, L., Alpi, A., & Perata, P. (2008). Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Functional Plant Biology, 35(7), 606–618.

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director of the ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, for encouraging to write this book chapter.

Authors Contribution

Conceptualization of chapter (NLal, G Diwan AO Shirale); Collection of literature (NLal, AO shirale, P Gurav, K Rani, G Diwan); preparation of the manuscript (NL, AO shirale, P Gurav, K Rani, G Diwan); editing and corrections (BP Meena, N Sahu, AK Biswas).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lal, N. et al. (2023). Plant Secondary Metabolites and Their Impact on Human Health. In: Rajput, V.D., El-Ramady, H., Upadhyay, S.K., Minkina, T., Ahmed, B., Mandzhieva, S. (eds) Nano-Biofortification for Human and Environmental Health. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-031-35147-1_15

Download citation

Publish with us

Policies and ethics